

A DENOTATIONAL ENGINEERING

OF PROGRAMMING LANGUAGES

To make software systems reliable

and user manuals clear, complete, and consistent

A book in statu nascendi
(a working version)

Andrzej Jacek Blikle

Piotr Chrząstowski-Wachtel

Janusz Jabłonowski

Andrzej Tarlecki

It always seems impossible

until it's done.

Nelson Mandela

Warsaw, August 19th, 2024

„A Denotational Engineering of Programming Languages” by A.J. Blikle, P. Chrząstowski-Wachtel, J. Jabłonowski, and A.
Tarlecki has been licensed under a Creative Commons: Attribution-Noncommercial-NoDerivatives 4.0 International. For de-
tails see: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 2

Acknowledgments

The writing of this book started in 2013. Since then, the following of our colleagues have contributed to it

with their remarks (ordered historically): Stanisław Budkowski, Antoni Mazurkiewicz, Marek Ryćko, Bo-

gusław Jackowski, Ryszard Kubiak, Paweł Urzyczyn, Marek Bednarczyk, Wiesław Pawłowski, Krzysztof

Apt, Jarosław Deminet, Katarzyna Wielgosz, Marcin Stańczyk, Albert Cenkier, Włodzimierz Drabent.

Our special thanks go additionally to:

• Stefan Sokołowski, who pointed out some inconsistencies of our earlier treatment of assertions

and invariants,

• Jan Madey, who came with many bibliographical comments,

• Krzysztof Apt, who contributed with numerous substantial remarks and suggestions to the pro-

gram-correctness model,

• Radosław Waśko, who pointed out some inconsistencies in the definitions of quantifiers for yokes.

Nelson Mandela’s quotation on the front page has been taken from

https://www.brainyquote.val/authors/nelson_mandela.

https://www.brainyquote.com/authors/nelson_mandela

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 3

Contents

Acknowledgments .. 2
1 INTRODUCTION ... 8

1.1 What motivated us to write this book? .. 8
1.2 Building mathematically correct programs ... 8
1.3 Designing languages with mathematical semantics .. 9
1.4 What is in the book? .. 11
1.5 What differentiates our approach from the others? ... 12
1.6 Where are we on the way from user expectations to an executable code? .. 13

2 METASOFT AND ITS MATHEMATICS .. 14

2.1 Basic notational conventions of MetaSoft ... 14

2.1.1 General rules ... 14
2.1.2 Sets .. 15
2.1.3 Functions ... 16

2.2 Tuples .. 19
2.3 Partially ordered sets ... 20
2.4 Chain-complete partially-ordered sets ... 21
2.5 A CPO of formal languages .. 23
2.6 Equational grammars ... 24
2.7 A CPO of binary relations ... 25
2.8 A CPO of denotational domains .. 29
2.9 Abstract errors ... 31
2.10 Two three-valued propositional calculi ... 32
2.11 Data algebras ... 34
2.12 Many-sorted algebras .. 35
2.13 Abstract syntax and reachable algebras ... 38
2.14 Ambiguous and unambiguous algebras ... 42
2.15 Algebras and grammars ... 44
2.16 Abstract-syntax grammar is LL(k) .. 49

3 AN INTUITIVE INTRODUCTION TO DENOTATIONAL MODELS .. 51

3.1 How did it happen?.. 51
3.2 From denotations to syntax ... 53
3.3 Why we need denotational models of programming languages? .. 54
3.4 Five steps to a denotational model .. 55
3.5 Six steps to the algebra of denotations .. 57
3.6 Lingua as a strongly-typed language ... 58

4 DATA, TYPES, VALUES AND YOKES ... 59

4.1 Data ... 59
4.2 The types of data ... 62
4.3 Typed data ... 66
4.4 Yokes ... 70
4.5 Values, references, objects, deposits and types ... 74

5 CLASSES AND STATES ... 78

5.1 Classes intuitively ... 78
5.2 Classes formally .. 80
5.3 Stores and states .. 81
5.4 Two regimes of handling items ... 83

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 4

5.4.1 An overview .. 83
5.4.2 Usability regime .. 84
5.4.3 Visibility regimes .. 85

6 DENOTATIONS ... 90

6.1 The carriers of the algebra of denotations ... 90
6.2 Identifiers, class indicators and privacy statuses ... 91
6.3 Programs and their segments ... 92
6.4 Expressions .. 93

6.4.1 Value expressions ... 93
6.4.2 Yoke expressions .. 97
6.4.3 Type expressions ... 98
6.4.4 Reference expressions ... 100

6.5 Instructions .. 100

6.5.1 Signatures of constructors ... 100
6.5.2 Assignment instructions .. 101
6.5.3 Structural instructions ... 101

6.6 Methods ... 104

6.6.1 An overview of methods ... 104
6.6.2 Signatures and parameters .. 106
6.6.3 Imperative pre-procedures .. 106

6.6.3.1 An intuitive understanding ...106
6.6.3.2 Creating imperative pre-procedures ...107
6.6.3.3 A static compatibility of parameters ..108
6.6.3.4 Passing actual parameters to a procedure ...109
6.6.3.5 Returning the references of reference parameters ..113
6.6.3.6 Calling an imperative procedure ..116

6.6.4 Functional pre-procedures... 116

6.6.4.1 Creating functional pre-procedures ..116
6.6.4.2 Calling functional procedures ..117

6.6.5 Object pre-constructors ... 117

6.6.5.1 Object constructors versus imperative procedures ...117
6.6.5.2 Creating an object pre-constructor ...118
6.6.5.3 Calling object constructors...119

6.7 Declarations ... 120

6.7.1 An overview of declarations ... 120
6.7.2 Declarations of variables ... 121
6.7.3 Declarations of classes — a basic constructor .. 122
6.7.4 Class transformers ... 123

6.7.4.1 The signatures of constructors ...123
6.7.4.2 Adding an abstract attribute to the objecton of a class ...124
6.7.4.3 Adding a concrete attribute to the objecton of a class ..125
6.7.4.4 Concretizing abstract attributes and adding concrete attributes ...126
6.7.4.5 Adding a type constant to a class ...126
6.7.4.6 Adding a method constant to a class ..127
6.7.4.7 Composing transformers sequentially ..128

6.7.5 Enrichments of covering relations .. 128
6.7.6 The openings of procedures .. 129

7 SYNTAX AND SEMANTICS .. 131

7.1 An overview of syntax derivation ... 131
7.2 Abstract syntax .. 132

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 5

7.2.1 General remarks .. 132
7.2.2 Identifiers, class indicators and privacy statuses ... 132
7.2.3 Type expressions ... 132
7.2.4 Value expressions ... 132
7.2.5 Reference expressions ... 133
7.2.6 Yoke expressions .. 133
7.2.7 Instructions .. 134
7.2.8 Declarations .. 134
7.2.9 Openings of procedures .. 134
7.2.10 Class transformers .. 134
7.2.11 Preambles of programs ... 134
7.2.12 Programs ... 134
7.2.13 Declaration-oriented carriers .. 134
7.2.14 Signatures ... 135

7.3 Concrete syntax ... 135

7.3.1 General remarks .. 135
7.3.2 Identifiers, class indicators and privacy statuses ... 135
7.3.3 Type expressions ... 136
7.3.4 Value expressions ... 136
7.3.5 Reference expressions ... 136
7.3.6 Yoke expressions .. 136
7.3.7 Instructions .. 137
7.3.8 Declarations .. 137
7.3.9 Openings of procedures .. 137
7.3.10 Class transformers .. 138
7.3.11 Preambles of programs ... 138
7.3.12 Programs ... 138
7.3.13 Declaration-oriented carriers .. 138
7.3.14 Signatures ... 138

7.4 Colloquial syntax ... 139

7.4.1 New constructor of attribute declarations ... 139
7.4.2 The list of colloquial domains ... 140

7.5 Semantics .. 140

7.5.1 The ultimate semantics of Lingua ... 140
7.5.2 Why do we need a denotational semantics? .. 143

8 SEMANTIC CORRECTNESS OF PROGRAMS ... 145

8.1 Historical remarks ... 145
8.2 A relational model of nondeterministic programs ... 146
8.3 Iterative programs ... 147
8.4 Procedures and recursion... 150
8.5 Three concepts of program correctness ... 150
8.6 Partial correctness ... 154

8.6.1 Sequential composition and branching ... 154
8.6.2 Recursion and iteration ... 156

8.7 Weak total correctness... 159

8.7.1 Sequential composition and branching ... 159
8.7.2 Recursion and iteration ... 161

9 VALIDATING PROGRAMMING ... 165

9.1 Languages of validating programming .. 165

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 6

9.2 Conditions ... 167

9.2.1 General assumptions about conditions .. 167
9.2.2 Value-oriented conditions ... 168
9.2.3 Cov-oriented conditions .. 168
9.2.4 Value-, type- and reference-oriented conditions ... 171
9.2.5 Procedure-oriented conditions .. 172
9.2.6 Assertions and specified programs ... 173
9.2.7 Algorithmic conditions ... 175

9.3 Metaconditions .. 176

9.3.1 Basic categories of metaconditions ... 176
9.3.2 Properties of metapredicates ... 178
9.3.3 Metaconditions associated with programs .. 179

9.4 Metaprogram constructions rules .. 182

9.4.1 A birds-eye view on a metaprogram development ... 182
9.4.2 Correctness-preserving modifications of metaprograms .. 183
9.4.3 Universal rules .. 184
9.4.4 Rules for metadeclarations .. 185

9.4.4.1 Variable declarations ...186
9.4.4.2 Enrichment of a covering relation ..186
9.4.4.3 Class declarations ..186

9.4.5 The opening of procedures .. 187
9.4.6 Rules for metainstructions .. 188

9.4.6.1 Rules for composed instructions ..188
9.4.6.2 Rules for assignment instructions ..188
9.4.6.3 Rules for imperative procedure calls ..190
9.4.6.4 The case of recursive imperative procedures ...192
9.4.6.5 The case of functional procedures ..193
9.4.6.6 Jaco de Bakker paradox in Hoare’s logic ...194

9.5 Transformational programming .. 195

9.5.1 First example ... 195
9.5.2 Changing the types of data .. 201
9.5.3 Adding a register identifier ... 202

10 RELATIONAL DATABASES INTUITIVELY .. 205

10.1 Preliminary remarks .. 205
10.2 Basic values and their types .. 205
10.3 Creating tables ... 207
10.4 Databases and subordination relation between tables ... 209
10.5 Instructions of table modification .. 210
10.6 Transactions .. 211
10.7 Queries .. 213
10.8 Views ... 215
10.9 Cursors .. 216
10.10 The client-server environment ... 217

11 A DENOTATIONAL MODEL FOR DATABESES: Lingua-SQL .. 218

11.1 Lingua-SQL as an enrichment of Lingua .. 218
11.2 Data, types, values and states .. 219

11.2.1 Basic data, types and values ... 219
11.2.2 Columns, their yokes and types .. 220
11.2.3 Labeled rows and row yokes .. 222
11.2.4 Tables and their types ... 223

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 7

11.2.5 Databases and their subordination relations ... 225
11.2.6 States ... 229

11.3 The algebra of denotations .. 230

11.3.1 Replicated denotations and their constructors .. 230
11.3.2 The carriers of the algebra of denotations .. 231
11.3.1 Constructors of primitive denotations .. 233
11.3.2 Expressions ... 233

11.3.2.1 Categories of SQL expressions ...233
11.3.2.2 Basic-type expressions..233
11.3.2.3 Row expressions ...234
11.3.2.4 Column-yoke expressions ...234
11.3.2.5 Row-yoke expressions ..235
11.3.2.6 Column-marking expressions ...235
11.3.2.7 Column-type expressions..235
11.3.2.8 Table-header expressions ..236
11.3.2.9 Table-type expressions ...236

11.3.3 Declarations of table variables.. 236
11.3.4 Instructions ... 237

11.3.4.1 Row-oriented table instructions ..237
11.3.4.2 Column-oriented table instructions ...239
11.3.4.3 Transactions ..243
11.3.4.4 Queries..243
11.3.4.5 Instructions modifying integrity constraints ...243
11.3.4.6 Cursors..244
11.3.4.7 Views ..244

12 AN EXERCISE WITH A DENOTATIONAL CONCURRENCY ... 245

12.1 An overview of our model of concurrency .. 245
12.2 Bundles of computations ... 247

12.2.1 Abstract nets and quasinets ... 247
12.2.2 Nets of the bundles of computations .. 248
12.2.3 Strong total correctness of bundles ... 251
12.2.4 Temporal quantifiers ... 253

12.3 Petri nets and trace languages ... 253

12.3.1 Trace languages of Antoni Mazurkiewicz .. 253
12.3.2 Trace languages and Petri Nets ... 258
12.3.3 Petri nets redefined ... 261
12.3.4 Petri nets with data flow ... 264

12.4 Building a language of concurrent programs .. 267

12.4.1 General assumptions about the language .. 267
12.4.2 A case study of a structured constructor ... 268

13 INDICES AND GLOSSARIES ... 272

13.1 References ... 275
13.2 Index of terms and authors .. 280
13.3 Index of notations .. 283

14 WHAT REMAINS TO BE DONE .. 272

14.1 Computer-aided program development ... 272
14.2 Computer-aided language design .. 273
14.3 Techniques of writing user manuals .. 274
14.4 Programming experiments .. 274
14.5 Building a community of Lingua supporters ... 274

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 8

1 INTRODUCTION

1.1 What motivated us to write this book?

It is a well-established engineering practice that designing a new product starts from a blueprint supported by

mathematical calculations. Both provide a mathematical warranty that the future functionality of the product

will satisfy the expectations of its designer and user.

In software engineering, the situation is different. In the place of blueprints and calculations, programmers

develop their codes starting from a contract between a future user and an IT producer, usually written in a

more or less technical language but without mathematical rigor. The future target code is developed from

such a contract through a sequence of steps, where this contract is “translated” to increasingly more and more

technical descriptions and ends up with a compilable code. Although all these descriptions have a profession-

al character, they still do not offer a mathematical precision comparable to, e.g., differential equations of a

bridge designer.

As a consequence of this situation, large parts of budgets for program developments are spent on testing,

i.e., removing errors introduced at the coding stage. Since testing may only discover some faults but never

guarantee their absence, the non-discovered bugs are passed on to users to be removed later under the name

“maintenance”. In several cases, this situation led to spectacular catastrophes practically always — to many

nuisances for users. The latter are, therefore, forced to accept a disclaimer like the following one:

There is no warranty for the program to the extent permitted by applicable law. Except when otherwise

stated in writing, the copyright holders and/or other parties provide the program "as is" without warranty of

any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability

and fitness for a particular purpose. The entire risk as to the quality and performance of the program is with

you. Should the program prove defective, you assume the cost of all necessary servicing, repair, or correc-

tion.

Is it possible that a producer of a car, a dishwasher, or a building could request such a disclaimer from

their clients? Why, then, is the software industry an exception? In our opinion, one of the causes of this situa-

tion is a lack of adequate mathematical tools for software engineers to guarantee the functional reliability of

their products.

Of course, we are aware that mathematical tools will not solve all problems of software engineering, as

they are not solving all problems in other industries. At the same time, however, we are convinced that there

is a need for “more mathematics” in software production. This book proposes two sets of mathematical tools

for software engineers: one addressed to language designers and the other to programmers. We believe that

taking responsibility by software engineers for their products should be possible to the same extent as in re-

maining industries.

1.2 Building mathematically correct programs

The issue of mathematically provable program correctness appeared for the first time in a work by Alan Tu-

ring [87] published in conference proceedings On High-Speed Calculating Machines, which took place at

Cambridge University in 1949. Later, that subject was investigated for several decades under the name of

“proving program correctness”, but the developed methods never became a standard tool for the software

industry. Consequently, many people concluded that research in this field is not worth the effort. A particu-

larly explicit formulation of this opinion we found in a monograph, Deductive Software Verification [2], pub-

lished in 2016:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 9

For a long time, the term formal verification was almost synonymous with functional verification. In the

last years, it became more and more clear that full functional verification is an elusive goal for almost all

application scenarios. Ironically, this happened because of advances in verification technology: with the

advent of verifiers, such as KeY, that mostly cover and precisely model industrial languages and that can

handle realistic systems, it finally became obvious just how difficult and time-consuming the specification of

the functionality of real systems is. Not verification, but specification is the real bottleneck in functional veri-

fication.

We strongly believe that the failure to prove program correctness in practical scenarios has two primary

sources.

The first is an obvious observation that proofs of theorems are usually longer than the theorems them-

selves. Therefore, proofs of program correctness may contain thousands, if not millions of lines, which

makes “hand-made proofs” unrealistic. Additionally, fully formalized proofs for “practical” programs are

hardly possible due to the lack of formal semantics of the languages in which they have been written.

The second cause is even more critical — programs that are supposed to be proven correct are usually in-

correct! Consequently, correctness proofs are regarded as methods of identifying errors in programs. Besides,

the order, first a program and then the proof of its correctness, may seem natural for mathematicians — first a

hypothesis and then its proof — but is somewhat awkward for engineers, who first prepare blueprints and

calculations and only then build “their bridges”.

To our knowledge, the inadequacy of the approach of first writing a program and only then trying to prove

its correctness was pointed out for the first time by Edsger Dijkstra in 1976 in his book A Discipline of Pro-

gramming [51] where he writes:

Between the lines (of his book) the reader may have caught a few more general messages. The first mes-

sage is that it does not suffice to design a mechanism of which we hope that it will meet its requirements, but

we must design it is such a form that we can convince ourselves — and anyone else for that matter — that it

will, indeed, meet its requirements. And, therefore, instead of first designing a program and then trying to

prove its correctness, we develop correctness proof and program hand in hand (our emphasis). (In actual

fact, the correctness proof is developed slightly ahead of the program: after having chosen the form of the

correctness proof, make the program so that it satisfies the proof’s requirements.)

Dijkstra formalized this idea using his weakest preconditions. A little later (1997 – 1981), Andrzej Blikle

published a few papers [25] - [28] technically different from Dijkstra’s approach but in a similar spirit. In

recent years, Dijkstra’s ideas have been implemented by the authors of Dafny Environment [???] and their

followers (cf. Tabea Bordis et al. [41]) under the name correct-by-construction.

In Dijkstra’s approaches, the authors tacitly assume that their proposed program constructors are sound.

They do not prove this soundness since their languages lack mathematical semantics. In our approach, we

first show how to build programming languages with fully mathematical semantics and then how to develop

sound program-construction rules for such languages.

1.3 Designing languages with mathematical semantics

By a mathematical semantics of a programming language, we shall mean a function that assigns meanings to

programs. Since the 1970s, many researchers have started to believe that such semantics, to be “practical,”

must be compositional, i.e., that the meaning of a whole must be a composition of the meanings of its parts.

Later, such semantics were called denotational — the meaning of a program is its denotation — and for

about two decades, researchers investigated the possibilities of defining denotational semantics for existing

programming languages. The two most complete (although not fully formalized) such semantics were written

in 1980 for Ada [16] and CHILL [42] in a metalanguage VDM [15]. A little later, in 1987, Andrzej Blikle

described a denotational semantics of a subset of Pascal [29]. In the latter case, the metalanguage was Meta-

Soft [29], primarily based on VDM.

Unfortunately, none of these attempts created a denotational semantics of a widely used programming

language. In our opinion, this situation was caused by the fact that for most language designers, the meaning

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 10

of a program is a compiler’s behavior generated by the execution of this program. Also, programmers, when

they explain to each other what a given piece of syntax “means”, describe what a compiler will “do” during

the execution of this syntax. This machine-oriented understanding of program meanings has led to syntaxes

that are not “suitable” for giving them denotational semantics. Technical arguments supporting this opinion

will be offered later in Sec. Sec. 6 and 7.

Independent of these problems, many researchers have found denotational models technically too compli-

cated. Let us quote just one such opinion expressed by Cliff Johns in his book Understanding Programming

Languages [63]:

Denotational semantics is mathematically elegant but requires some fairly sophisticated mathematical

concepts in order to describe programming languages of the sort that are used to build real applications.

Such opinions about denotational semantics were associated with their early-stage technicalities. One was

a jump instruction goto, and the other — self-applicable procedures that can take themselves as parameters

(Algol 60, see [7]). The former had led to continuations [84], the latter to reflexive domains [83]. Continua-

tions were counterintuitive and reflexive domains — mathematically fairly complicated. Fortunately, alt-

hough these mechanisms were considered necessary in the 1960s, they were abandoned ten years later.

In our approach, we use neither continuations nor reflexive domains. The idea of denotational semantics

without these mechanisms was described by Andrzej Blikle and Andrzej Tarlecki in a joint paper [39] in

1983.

Besides the resignation of “historical” technicalities of denotational semantics, we use in our approach an

idea proposed by Andrzej Blikle in [30] that in developing a programming language, we should start from its

denotations DEN and derive from it a syntax SYN later. He proved that, in this case, a denotational seman-

tics

DS : SYN → DEN

always exists and, additionally, is unique. Formally, SYN and DEN constitute many-sorted algebras (Sec.

2.12), and the associated semantics DS is a (unique) homomorphism between them. As it turns out, there is a

simple method — to a large extent algorithmizable — of deriving syntax from (the description of) denota-

tions and, later, the semantics for both of them.

To illustrate our method, we designed a virtual programming language, Lingua. At the level of data

structures, it includes booleans, integers, reals, texts, records, arrays, and their arbitrary combinations plus

objects. It is equipped with a relatively strong mechanism of user-definable data types on the one hand and

object types, i.e., classes, on the other. Control structures available in Lingua include structural instructions

and multi-recursion procedures. The language has a complete error-reporting mechanism, by which we mean

that every run-time error (except infinite looping) is signalized by an error message. Of course, errors will not

occur in correct programs.

At the end of the book, we show how to enrich Lingua by two following mechanisms:

1. an API for SQL,

2. concurrency at the level of simple Petri nets,

Of course, Lingua is not developed/described in all detail since, in such a case, the book would hardly be

readable. Our exercise with Lingua only illustrates a language-designing method that (hopefully) may be

used in some future to design and implement practical programming languages.

Nevertheless, an experimental interpreter of Lingua has been developed by a group of students attending

courses given commonly by Andrzej Blikle and Alex Schubert at the Department of Mathematics, Informat-

ics, and Mechanics of Warsaw University in the academic years 2019/20 and 2020/21.

Once we have a language with denotational semantics, we can define program-construction rules and

prove their soundness. Our construction rules were sketched for the first time in [25]. In the present book,

they are developed for Lingua. Technically, the rules are used to build so-called metaprograms that syntacti-

cally include their specifications. Program construction rules guarantee that if we combine two or more cor-

rect programs into a new program or transform a correct program, we get a correct one again. Therefore, the

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 11

correctness proofs of programs are implicit in how they are developed and in the soundness proofs of con-

struction rules.

1.4 What is in the book?

As mentioned in the preceding sections, the book contains many thoughts developed during 1960-1990 but

later abandoned. One of the teams developing these ideas was working at the Institute of Computer Science

of the Polish Academy of Sciences, and two of us — A.Blikle and A.Tarlecki — enjoyed working there. We

then created a semi-formal metalanguage called MetaSoft [29] dedicated to formal definitions of program-

ming languages.

Sec.2 introduces general mathematical tools used later in describing our basic model. In particular, they

include:

1. a formal, but not formalized, definition of MetaSoft,

2. fixed-point theory in partially ordered sets,

3. the calculus of binary relations,

4. formal-language theory,

5. fixed-point domain equations based on so-called naive denotational semantics (rather than Scott and

Strachey’s reflexive domains),

6. many-sorted algebras,

7. abstract errors as tools for the description of error-handling mechanisms,

8. three-valued predicate calculi of McCarthy and Kleene,

9. equational grammars (equivalent to Chomsky’s grammars and BNF’s),

10. syntactical algebras based on equational grammars,

11. a short half-formal reminder of LL(k) grammars.

It should be emphasized in this place that Sec.2 may discourage less mathematically oriented readers. These

readers may skip reading this section, maybe except Sec. 2.1 where notational conventions are explained. All

mathematical tools and facts mentioned there are necessary to prove the mathematical soundness of our ap-

proach but are not prerequisites to understanding it.

Sec. 3 includes an intuitive description of our model and defines significant milestones to be passed

through in its construction.

Sec. 4 is devoted to developing a general model of data structures and their types. Types, which are fre-

quently regarded as sets of data, in our model are finitistic structures that indicate the “shapes” of the corre-

sponding data. This approach allows for a definition of an algebra of types at a data level and an algebra of

the denotations of type expressions at the level of denotations.

In Sec. 5 we introduce three fundamental concepts: a class, an object, and a state. We also discuss the vis-

ibility (privacy) issues of objects’ attributes, typical of object-oriented mechanisms.

Sec. 6 describes the core of our model and is devoted to denotations. Here, we define the carriers and the

constructors of an algebra of denotations. From a practical viewpoint, when we design an algebra of denota-

tions, we make significant decisions on the tools offered by a language to programmers.

Once denotations are defined, we proceed in Sec. 7 to the derivation of syntax. Here, given a description

of the algebra of denotations, we derive step-by-step three syntaxes: an abstract syntax, a concrete syntax,

and a colloquial syntax. Formally, these syntaxes constitute algebras and are described by equational gram-

mars. We also show how to derive a formal definition of a function of semantics once we are given an alge-

bra of denotations and “its” algebra of syntax.

Sec.8 is devoted to an abstract theory of partial and total correctness of programs. This theory bases on an

algebra of binary relations, making it universal for many programming languages.

In Sec. 9, starting from Lingua, we develop a corresponding language for validated programming, Lin-

gua-V. In this case, however, we do not build a logic of programs — as C.A.R. Hoare [61], [5] or E. Dijkstra

[50], [51] did — but we define a list of (proved) rules for the construction of correct programs.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 12

Sec. Sec. 10 and 11 are devoted to enriching Lingua with SQL mechanisms. Since we do not expect our

reader to be familiar with SQL details, we provide in Sec. 10 an intuitive introduction to its primary tools. In

Sec 11, we give these tools a denotational model. As it turns out, extending Lingua to Lingua-SQL is more

than just a simple enrichment of a source algebra of denotations by new carriers and constructors. It requires

profound modifications and, therefore, offers a non-trivial example of enhancing a denotational model by

new mechanisms.

Even more substantial changes to our model are necessary when, in Sec. 12, we introduce some concur-

rency mechanisms into Lingua. In this case, the flowchart-like structures of our programs are replaced by

simple Petri nets enriched by the trace languages of Mazurkiewicz [72].

In Sec. 13, we included short remarks about what remains to be done in our project. In particular, we are

talking about two computer-assisted work environments: one for the designers of languages using our method

and another for programmers in such languages.

1.5 What differentiates our approach from the others?

Historically, the ideas of denotational engineering emerged from the early works of A. Blikle ([18] to [33]),

A.Blikle with A. Mazurkiewicz [37], and A.Blikle with A. Tarlecki [39]. In turn, these works followed vari-

ous approaches in this or another way. Below, we give references to the earliest papers on these approaches

and to the significant contributions that followed:

• generative grammars of N. Chomsky ([44] in 1956, [45] in 1957, [46] in 1959, [47] in 1962, [55] in

1966, and [17] in 1971),

• denotational semantics of D. Scott’s and Ch. Strachey’s ([83] in 1971 and [84] in 1977),

• C.A.R Hoare’s logic of programs (the founding paper [61] in 1969, and surveys [4] in 1981, [5] in

2020 and [6] in 2020),

• E. Dijkstra’s total correctness of programs and the derivation of correct programs ([50] in 1968 and

[51] in 1976),

• many-sorted algebras in computer science by J. A Goguen, J.W, Thatcher, E. G. Wagner and J. B.

Wright ([58] in 1977),

• three-valued propositional calculus of J. McCarthy (cf. [74] in 1967),

• abstract errors in program’s semantics originally introduced by Joe Goguen ([57] in 1978, [28] in

1981, [11] in 1984, [29] in 1987, [86] in 1988, and [31] in 1988), and later also investigated from a

perspective of a Hoare’s logic by J. V. Tucker and J. I. Zucker ([86] in 1988).

The main differences between our approach and other approaches to denotational semantics and program

correctness are the following:

1. In the field of programming language design:

1.1. our denotational models are based on set theory rather than D. Scott’s and Ch. Strachey reflexive

domains,

1.2. the denotations of programs are state-to-state functions rather than continuation-to-continuation,

1.3. denotations are developed in the first place, and syntax is derived from them later; the process of

the derivation of syntax is highly algorithmizable,

1.4. the idea of a colloquial syntax allows making syntax user-friendly without damaging mathemati-

cal rigor,

1.5. our denotational models include:

1.5.1. error-detection mechanisms supported by three-valued boolean expressions and predicates,

1.5.2. objects and classes,

1.5.3. SQL databases,

1.5.4. simple Petri nets concurrency.

2. In the field of correct program development:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 13

2.1. the soundness of program construction rules is proved on the grounds of a denotation semantics of

the involved language,

2.2. the use of three-valued predicates enriches Dijkstra’s total correctness approach by a clean-

termination property.

1.6 Where are we on the way from user expectations to an executable

code?

A virtual production line in a software factory may be seen — from a simplified perspective — as a sequence

of the following actions:

1. the identification of user’s needs (either in a dialog with the user or by market research),

2. the creation of a technical vision of future software architecture; this step usually includes many sub-

steps where our intuitive image of the future software is gradually concretized,

3. the creation of a high-level program (coding) expected to be an adequate algorithmization of the out-

put of 2.,

4. a compilation process,

5. running the compiled code by hardware.

Of course, each of these stages offers many error opportunities. Why, then, have we restricted our attention to

step 3.?

The first answer is that our research experience predisposes us to tackle high-level program development

more than the other steps. Besides, there is quite a lot of mathematical research available in this field (cf. Sec.

1.5).

Our second answer is based on the fact that compilers and hardware are much better tested today — due to

their extensive use — than applications that are just being created, and therefore our choice of 3. before 4.

and 5. seems partly justified.

Why then 3., rather than 1. or 2.? In this case, in addition to our former arguments, we can say that we do

not know of languages used at early stages of software development that could be given mathematical seman-

tics. At the same time, however, domain-specific languages may offer a promising perspective. Therefore, it

may be vital to see to what extent our language development technique may open research opportunities in

this area.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 14

2 METASOFT AND ITS MATHEMATICS

From 1970 to 1990, Andrzej Blikle had been lecturing mathematical foundations of computer science to IT

practitioners. In these cases, he frequently heard an objection that there is too much mathematics that soft-

ware engineers have to swallow. Bosses of IT departments expected that their teams could be “trained” in

that new mathematics within one weekend, well maximally two. In such cases, he tried to bring to their atten-

tion that future mechanical or electrical engineers attend two to five semesters of mathematics during their

university studies. However, most of this mathematics was created at the borderline between the XIX and XX

century and is oriented towards physics, astronomy, and classical engineering rather than informatics.

At the beginning of the second half of the XX century, mathematicians started to think about mathematical

theories for computer science; some of the branches of mathematics earlier considered “unpractical” — such

as set theory, mathematical logic, or abstract algebras — became their standard tools. A little later, new

branches emerged: theory of abstract automata and formal languages, logic of programs, models of concur-

rent systems, and many others. Today, mathematical foundations of computer science embrace large and still

fast-growing new branches of applied mathematics.

In the present section, we describe selected mathematical tools we shall use in the book. At the same time,

we are conscious that going through this section may be pretty challenging for some readers. We may advise

them only to slip over this math and possibly return to it when some technique used in subsequent sections

will require a deeper justification.

2.1 Basic notational conventions of MetaSoft

2.1.1 General rules

MetaSoft is a semi-formal (i.e., not fully formalized) mathematical notation used in describing denotational

models of programming languages. Each such model consist of three mathematical entities:

1. Denotations — the meanings of programs and their components such as expressions, instructions,

 declarations etc.

2. Syntaxes — programs and their components.

3. Semantics — a function that assigns denotations to syntaxes.

In the colloquial English of computer scientists denotations are most frequently confused with semantic. We

can hear, e.g., that “the semantics of instructions are functions that modify memory states”. In our approach

we shall strictly distinguish between denotations that are the meanings of programs, syntaxes that are strings

of characters used by programmers, and semantics that are function mapping syntaxes into denotation. We

shall describe this fact by the following formula:

Sem : Syntaxes ⟼ Denotations

The notation used in this formula will be explained in Sec. 2.1.3. So far we may only notice that our mathe-

matical formulas will be typeset in Arial, rather than in Times New Roman Italic as usual in mathematical

texts. The reason of this decision is twofold:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 15

1. in our texts we want to distinguish between an informal layer typeset in Times New Roman including

its italic versions, and the layer of formulas,

2. as we are going to see, large and complex formulas that we shall use are better readable in Arial that in

Times Italic.

In turn, to carefully distinguish between syntax and denotations, programs end their components will be type-

set in Arial Narrow, e.g.,

while x > 100 do x := x-1 od

Additionally, since while, do and od are keywords, they are typeset in bold.

Another special property of MetaSoft is that (meta)mathematical variables that denote elements, sets and

functions are frequently many-character symbols rather than single letters. This choice has been forced by the

fact that in denotational models we use many more symbols than in “usual” mathematics, and therefore we

should by giving them mnemotechnical forms. A typical example of a MetaSoft formula such as

ind : InsDen = WfState → WfState

is read as follows: the domain of instruction denotations InsDen is the set of partial functions that transform

well-formed states into well-formed states. Elements of this domain will be denoted by ind possibly with

prefixes or postfixes.

Another special notation concerns indexed variables. In traditional mathematics indices are written as sub-

scripts, e.g., as ai. Since this complicates typing and is not compatible with the syntaxes used in programs,

we shall frequently write indices at the same level as an indexed symbol, e.g., as a-i. Of course, indices may

be many-character symbols as well.

Our special notational conventions have one more justification. As we are going to see, the descriptions of

denotational models in MetaSoft resemble programs, in particular codes of interpreters. In the future the

writing of such descriptions should be assisted by dedicated editors. The outputs of these editors will then

become inputs for generators of interpreters or compilers of corresponding programming languages.

Logical operators are given mnemotechnical names: and, or, not, tt, ff. The two last are logical constants

“true” and “false”. For quantifiers we shall use:

∀ ― general quantifier (for all)

∃ ― existential quantifier (there exists)

Instead of i = 1,…,n we shall write i = 1;n. By “iff” we shall mean “if and only if”, and by “wrt” — “with

respect to”.

2.1.2 Sets

Symbol {} denotes an empty set and

{ele-1,…,ele-n} or {ele-i | i = 1;n}

denote finite sets of n elements. The fact that ele is, or is not, an element of a set of elements Element we

shall write as

ele : Element or respectively as ele /: Element

For any sets A and B their inclusion will be written as

A ⊆ B

By

A | B and A∩B

we denote the union and the intersection of these sets . If FamSet is a family of sets then

U.FamSet

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 16

denotes the union of all the sets of this family. By

A x B

w denote the Cartesian product of sets. The expression:

A x B x C x D

denotes the set of tuples of the form (a, b, c, d), whereas the expression:

A x (B x C) x D

denotes the set of tuples of the form (a, (b, c), d), and analogously for other combinations of parentheses.

For every n ≥ 0 the n-th Cartesian power Acn of a set A is the set of all n-tuples of the elements of A, i.e.:

Ac0 = {()} — the only element of that set is an empty tuple

Acn = {(a-1,…,a-n) | a-i : A} — for n > 0

Given Cartesian powers, we can define two other operations:

Ac+ = U.{Acn | n > 0} — Cartesian plus operation,

Ac* = Ac0 | Ac+ — Cartesian star operation.

The set of all subsets of A and respectively of all finite subsets of A is denoted by

Sub.A

FinSub.A

The following notations shall be used for sets of relations and functions:

Rel.(A,B) — the set of all binary relations between A and B; i.e., the set of all subsets of A x B;
more about binary relations in Sec.2.7,

A → B — the set of all partial functions from A to B, i.e., functions that do not need to be

defined for all elements of A,

A ⟼ B — the set of all total functions from A to B, i.e., functions that are defined for all el-

ements of A; notice that each total function is a partial function but not vice-versa,

A ⟹ B — the set of all mappings from A to B, i.e., functions defined for only a finite subset

of A.

Following this notation by

f : A → B

we mean that f is an element of the set A → B, i.e. is a partial function from A to B, and analogously for oth-

er operators creating sets of functions. A is called the domain of f, and B is called its range. The use of colon

“:” also explains why the traditional a ∈ A we write as a : A.

2.1.3 Functions

For practical reasons, the value of a function fun for argument a shall be written as fun.a rather than fun(a).
Why this is practical will be seen a little later. The expression

fun.a = ? (2.1-1)

means that fun is not defined for a. It does not mean that “?” is anything like an “undefined element”. The

expression fun.a = ? stands for

not (∃b)(fun.a=b)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 17

Analogously

fun.a = !

stands for (∃b)(fun.a=b). For an arbitrary function

fun: A → B

and an arbitrary set C by the truncation of function f to C we shall mean:

fun truncate-to C = {(a, fun.a) | a : A ∩ C}.

The domain of definedness of function f is the set where f is defined, i.e.

dom.fun = {a | a : A and fun.a = !}

In the sequel we shall also use the notation

fun[a/?] = fun truncate-to (dom.fun – {a})

Another notation that will be used frequently comes from Haskell Curry and concerns many-argument func-

tion whose arguments are taken successively one after another. For instance, if

fun : A → (B → (C → (D → E))) (2.1-2)

then a value of such a function would be traditionally written as

((((fun.a).b).c).d)

 but Curry writes it as

fun.a.b.c.d

which intuitively means that

• function f takes a as an argument and returns as a value a function fun.a that belongs to the set

B → (C → (D → E)), and next

• function fun.a takes as an argument an element b and returns as a function fun.a.b that belongs to

C → (D → E), etc.

This notation allows not only to avoid many parentheses but also to define function of “mixed” types like e.g.

fun : A → (B ⟼ (C → (D ⟹ E))) or (2.1-3)
fun : (A → B) ⟼ (C → (D ⟹ E))

Another simplifying convention allows to write

fun : A → B ⟼ C → D ⟹ E (2.1-4)

instead of

fun : A → (B ⟼ (C → (D ⟹ E))) (2.1-5)

The expression

fun : ⟼ A (2.1-6)

means that fun is a zero-argument function with only one value that belongs to A. That value is denoted by

fun.()

About formulas in (2.1-2) to (2.1-6) we say that they describe type or signatures of corresponding functions.

For instance we say that the function in (2.1-4) is of the type

A → B ⟼ C → D ⟹ E

For every (possibly partial) function

fun : A → A,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 18

by its n-th iteration where n = 0,1,2,…we shall mean the function

funn : A → A

defined in the following way:

fun0 is an identity function on A, i.e. fun0.a = a for every a : A,

funn.a = fun.(funn-1.a) for n > 0.

In denotational descriptions of programming languages, we shall frequently use many-level conditional defi-

nitions of functions with the following scheme:

fun.x =
pre-1.x ➔ val-1
pre-2.x ➔ val-2
… (2.1-7)
pre-n.x ➔ val-n

where each pre-i is a classical predicate, i.e., a total function with logical values tt or ff, and each val-i is

some value. Formula (2.1-7) is read as follows:

if pre-1.x is true, then f.x = val-1 and otherwise,

if pre-2.x is true, then f.x = val-2 and otherwise,

…

Intuitively speaking, the evaluation of this function goes line by line and terminates at the first line where

pre-i.x is satisfied. Of course, to make such a definition unambiguous, the disjunction of all predicates pre-
i.x must evaluate to “true”, which means that all these predicates must exhaust all cases. Our usual way to

ensure this condition will be to write true for pre-n.x at the last line, which denotes a predicate, that is al-

ways true. It can also be read as “in all other cases”.

In the scheme (2.1-7) we also allow the situation where, in the place of a val-i we have the undefinedness

sign “?” which means that for x that satisfies pre-i.x, function f is undefined. This convention allows for

conditional definitions of partial functions.

In conditional definitions we also use a technique similar to defining local constants in programs. For in-

stance if fun : A x B ⟼ C we can write

fun.x =
pre-1.x ➔ val-1
let

(a, b) = x
pre-2.a ➔ val-2
pre-3.b ➔ val-3
…

which is read as: let x be a pair of the form (a, b). We can also use let in the following way:

fun.x =
pre-1.x ➔ val-1
let

y = h.x
pre-2.x ➔ fun-2.y
pre-3.x ➔ fun-3.y,
…

All these explanations are certainly not very formal, but the notation should be clear when it comes to its ap-

plications in concrete cases.

A finite total function fun : {a-1,…,a-n} ⟼ {b-1,…,b-n} defined by the formula:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 19

fun.x =
x=a-1 ➔ b-1
x=a-2 ➔ b-2
…
x=a-n ➔ b-n
true ➔ ?

shall be written as

[a-1/b-1,…,a-n/b-n] or alternatively as [a-i/b-i | i = 1;n].

The empty function will be denoted by []. Let f : A → B and g : C → D. The overwriting of f by g is a func-

tion denoted by

f⧫g : A|C → B|D

and defined in the following way:

(f⧫g).x =
g.x = ! ➔ g.x
true ➔ f.x

In particular, if f.x=? and g.x=?, then f⧫g.x=?. A special case of overwriting is an update of a function writ-

ten as f[a-1/b-1,…, a-n/b-n] and defined by the formula

f[a-1/b-1,…, a-n/b-n].x =
 x = a-1 ➔ b-1
 …
 x = a-n ➔ b-n

true ➔ f.x

We may also overwrite by an undefinedness:

(f[a-1/?,…, a-n/?]).x =
 x = a-1 ➔ ?
 …
 x = a-n ➔ ?

true ➔ f.x

Given two sets of functions F and G, we may overwrite one set by the other:

F ⧫ G = {f⧫g | f : F, g : G}.

2.2 Tuples

An expression

(a-1,…,a-n) or alternatively (a-i | i=1;n)

denotes n-tuple. Consequently () denotes an empty tuple. The difference between tuples and finite sets is

such that the order of elements in a tuple is relevant and repetitions are allowed, which is not the case for

sets. E.g.

{a, b, c ,c} = {a, c, b } = {a, b, c} = … but

(a ,b, c, c) ≠ (a, c, c, b) ≠ (a, b, c)

where a, b and c are different with each other.

Tuples are used as mathematical models for several concepts and among others for pushdowns. In this

case the following functions will be used later on in the book:

push.(b, (a-1,…,a-n)) = (b, a-1,…,a-n,) for n ≥ 0
pop.(a-1,…,a-n) = (a-2,…,a-n) for n ≥ 2

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 20

pop.(a) = ()
pop.() = ()
top.(a-1,…,a-n) = a-1 for n ≥ 1
top.() = ?

An important operation on tuples is a concatenation of tuples:

(a-1,…,a-n) © (b-1,…,b-m) = (a-1,…,a-n, b-1,…,b-m).

We shall also use two predicates:

are-repetitions.(a-1,…,a-n) = tt iff there exist i ≠ j such that a-i = a-j
no-repetitions.(a-1,…,a-n) = tt iff there are no i ≠ j such that a-i = a-j

Tuples may also be regarded as functions from natural numbers into their elements i.e.

(a-1,…,a-n).i = a-i

In the sequel we shall also need a function that given a tuple, returns its length:

length.() = 0
length.(a-1,…,a-n) = n

and another function that given a tuple returns the set of its element:

elements.(a-1,…,a-n) = {a-1,…,a-n}

2.3 Partially ordered sets

Let A be an arbitrary set and let

⊑ : Rel(A,A)

be a binary relation in this set. Relation ⊑ is said to be a partial order in A, if for any a, b, c : A the follow-

ing conditions are satisfied:

1. a ⊑ a reflexivity

2. if a ⊑ b and b ⊑ c then a ⊑ c transitivity

3. if a ⊑ b and b ⊑ a then a = b weak antisymmetricity

If a ⊑ b, then we say that a is smaller than b or that b is greater than a. If additionally a ≠ b, then we say

that a is significantly smaller than b or that b is significantly greater than a.

A pair (A, ⊑) is called a partially ordered set (abbr. POS), and the set A is called its carrier. The word

“partial” indicates that not necessarily any two elements of A are comparable with each other. If

for any a and b either a ⊑ b or b ⊑ a,

then we say that ⊑ is a total order.

Of course, every total order is partial but not vice versa. An example of a partial order which is not total is

the inclusion of sets. Such POS is called set-theoretic POS.

Let B be a subset of a partially ordered set A and let b : B. In this case

• b is called a minimal element in B, if there is no a : B such that a ⊑ b and a ≠ b

• b is called the least element in B, if for any a : B holds b ⊑ a,

• b is called a maximal element in B, if there is no a : B such that b ⊑ a and a ≠ b,

• b is called the greatest element in B, if for any a : B holds a ⊑ b.

There exist partially ordered sets without a minimal element and sets where there is more than one such ele-

ment. However, if there is the least element in a set, then it is the unique minimal element and analogously

for maximal and greatest elements.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 21

An upper bound of B is such an element of A, which is greater than any element of B. Notice that an up-

per bound of a set does not need to belong to that set, but if it does, then it is the greatest element of the set.

If the set of all upper bounds of B has the least element, then this element is called the least upper bound

of B1. If a two-element set {a, b} has the least upper bound, then we denote it by

a ˅ b

In a set-theoretic POS, the least upper bound of a family of sets is the set-theoretic union of that family. This,

of course, also concerns a family of two sets.

2.4 Chain-complete partially-ordered sets

Let (A, ⊑) be a partially ordered set. By a chain in that set we mean any sequence of elements of A:

a.1, a.2, a.3, …

such that a.i ⊑ a.(i+1). Here, for a change we write a.i instead of a-i. Note that in this case a may be regard-

ed as a function with natural-number arguments. If the set of all elements of a chain has the least upper

bound, then it is called the limit of that chain and is denoted by:

lim.(a.i | i = 1,2,…)

A POS is said to be chain-complete partially ordered set (abbr. CPO) if:

1. every chain in A has a limit,

2. there exists the least element in A.

This least element we shall denote by Φ.

A total function f : A ⟼ A is said to be monotone if a ⊑ b implies f.a ⊑ f.b and we say that it is continu-

ous if the following two conditions are satisfied:

1. for any chain (a.i | i = 1,2,…) the sequence (f.(a.i) | i = 1,2,…) is also a chain,

2. if the former has a limit, then the latter has a limit as well and

lim.(f.(a.i) | i = 1,2,…) = f.(lim.(a.i | i = 1,2,…)).

As is easy to see, every continuous function is monotone, which follows from the fact that

if a ⊑ b then lim(a, b, b, b, …) = b.

Continuous functions satisfy a so called Kleene theorem (see [64]) — which we shall frequently use in our

applications.

Theorem 2.4-1 If f is continuous in a chain-complete set, then the set of all solutions of the equation

x = f.x (2.4-1)

is not empty and contains the least element defined by the equation

Y.f = lim.(fn.Φ | n = 0,1,2,…) ■

Proof of that theorem is very simple:

f.(Y.f) = f.(lim.(fn.Φ | n = 0,1,2,…)) = lim.(fn.Φ | n = 1,2,…) = lim.(fn.Φ | n = 0,1,2,…).

The last equality follows from the fact that f0.Φ = Φ, hence adding f0.Φ to the chain, does not change its lim-

it. The property that Y.f is the least fixed point follows from the fact that for any other fixpoint X.f , Φ ⊑ X.f

and from the monotonicity of f we have fn.Φ ⊑ X.f hence lim.(fn.Φ | n = 0,1,2,…). ■

1 The greatest lower bound is defined in an analogous way but we will not need this concept in the book.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 22

The equation (2.4-1) is called a fixed point equation and its solution Y.t — the least fixed point of function

f. It is the least solution of the equation (2.4-1), but in the sequel we will call it simply the solution since oth-

er solutions will not be concerned.

The concept of a one-argument continuous function may be simply generalised to functions of many ar-

guments. We say that

f : Acn ⟼ A (2.4-2)

is continuous wrt to its first element, if for any tuple (a.1,…,a.(n-1)) the function

g.a = f.(a, a.1,…,a.(n-1))

is continuous. In an analogous way we define the continuity of f with respect to any other of its arguments.

A many-argument function (2.4-2) is called continuous if it is continuous in all of its arguments.

As we are going to see soon, continuous functions are fundamental for our applications since due to

Kleene’s theorem we can recursively define sets and functions. Such definitions will most frequently have

the form

x.1 = f-1.(x.1,…,x.n)
…
x.n = f-n.(x.1,…, x.n)

Of course, every such set of equations may be regarded as one equation

X = f.X

in a POS over a Cartesian product A.1 x … x A.n where

f.(x.1,…,x.n) = (f-1.(x.1,…,x.n),…, f-n.(x.1,…,x.n))

and where the order is defined component-wise, i.e.

(a.1,…,a.n) ⊑(n) (b.1,…,b.n) iff a.i ⊑ b.i for i = 1;n.

As is easy to show, if all A.i’s are chain-complete, then their Cartesian product is chain-complete wrt the

above order. Besides, if all f-i are continuous, then f is continuous, as well.

As turns out, fixed-point sets of equations with continuous functions may be transformed (and reduced) in

a way analogous to the case of algebraic equations. It is expressed by two theorems due to Hans Bekić [12]

and Jacek Leszczyłowski [67].

Theorem 2.4-2 If f, g : A x A ⟼ A are continuous, then the set of equations

a = f.(a, b)

b = g.(a, b)

is equivalent to

a = f.(a ,b)

b = g.(f.(a, b), b) ■

Theorem 2.4-3 If f, g : A x A ⟼ A are continuous, then the set of equations

a = f.(a ,b)

b = g.(a, b)

is equivalent to

a = h.b

b = g.(a, b)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 23

where h is a function that to every b assigns the least fixed point of f.(x, b) regarded as a one-argument

function of x running over the set A. ■

As we are going to see, the theory of fixed-point equations in CPO is an important tool for writing recur-

sive definitions of sets and of functions in denotational models.

2.5 A CPO of formal languages

Grammars of natural languages such as English, Polish or French may be regarded as algorithms allowing to

check which sentences are grammatically correct and which are not. In this spirit Noam Chomsky2 has de-

veloped in early 1960. his model of generative context-free grammars or simply context-free grammars (see

[43] − [47]). Formal languages generable by such grammars have been called context-free languages.

Although his model turned out to be not wite adequate for natural languages, it was successfully applied to

programming languages. In the early years for Algol 60 and Pascal, later for ADA and CHILL and many

other languages. These applications contributed to a rapid development of their theory. The first internation-

ally recognized monography on that subject was written in 1966 by Seymour Ginsburg [55], and the first

Polish monography in 1971 by Andrzej Blikle [17]. A year later, Andrzej Blikle has published a paper on

equational grammars [19], which are equivalent, in a sense, to context-free grammars.

This section contains a short introduction to context-free languages in the context of equational grammars

which are discussed in Sec. 2.6.

Let A be an arbitrary finite set of symbols called an alphabet. By a word over A, we mean every finite tu-

ple over A, including the empty tuple (). Traditionally words are written as sequences of characters, e.g., ac-
cbda.

Since words are tuples (of characters) we can apply to them the operation of concatenation defined in Sec.

2.2. E.g.

abdaa © eaag = abdaaeaag

Every set L of words over A is called a formal language (or simply a language) over A. By Lan.A we denote

the family of all languages over A and by {} — an empty language (empty set). If P and Q are languages,

then their concatenation is the language defined by the equation:

P © Q = {p © q | p:P and q:Q}.

As we see, by © we denote not only a function on words but also on languages. If it does not lead to

ambiguities, P © Q is written as PQ. Since concatenation is an associative operation, we can write PQL in-

stead of (PQ)L or P(QL). We shall also assume that concatenation binds stronger than set-theoretic union,

hence instead of

(P © Q) | (R © S)

we shall write

PQ | RS.

It is also easy to see that concatenation is left- and right-distributive over the union, i.e.

(P | Q) R = PR | QR
R (P | Q) = RP | RQ

The n-th power of a language P is defined recursively:

P0 = { () }

Pn = P © Pn-1 for n > 0

2 Noam Chomsky — an American linguist, philosopher and political activist. Professor of linguistics at Massachusetts
Institute of Technology, creator of the concept of generative grammars.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 24

We shall also use two operators called respectively (language-theoretic) plus and star:

P+ = U.{Pi | i > 0}

P* = P+ | P0

Hence for an alphabet A, the set A+ is the set of all non-empty words over A, and A* is the set of all words

over A. Languages over A are subsets of A*.

Note the difference between L* and Lc*. Whereas the former is a set of words over the alphabet of L, the

latter is a set of tuples of words of L.

Since the inclusion of sets is a partial order, (Lan.A, ⊆) is a CPO with empty language as the least ele-

ment. As is easy to show, all operations on languages, which are defined above, plus the union of languages,

are continuous. For any two languages, P and Q, their least upper bound is their union P | Q, and the limit of

a chain of languages is the union of the elements of the chain.

2.6 Equational grammars

Since all the operations on languages defined in Sec. 2.5 are continuous, they can be used in fixed-point

equations (Sec. 2.4) regarded as grammars. This idea is elaborated below.

Consider a simple example of a set of equations that defines the set of identifiers of a programming lan-

guage. In our example we assume that identifiers always start from a letter:

Letter = {a, b, …, z}
Digit = {0, 1, …, 9}
Character = Letter | Digit
Suffix = {()} | Character © Suffix
Identifier = Letter © Suffix

Such sets of equations are called equational grammars, and their solutions (tuples of languages) are called

many-sorted languages. In the above case, the defined many-sorted language is a tuple of five categories

(sorts):

(Letter, Digit, Character, Suffix, Identifier).

The category Suffix has an auxiliary character since its only role is to express the fact that an identifier must

start with a letter. Its equation can be eliminated in using the Theorem 2.3-2 and the Theorem 2.3-3. As is

easy to prove

Suffix = Character*

hence our grammar may be reduced to a more compact form

Letter = {a, b, …, z}
Digit = {0, 1, …, 9}
Identifier = Letter © (Letter | Digit)*

This grammar defines a many-sorted language, which consists of three categories — and therefore is differ-

ent from the former — but defines the same set Identifier.

Let us now investigate equational grammars more formally (for details see [19]). Let A be an arbitrary

non-empty finite alphabet and let

Fam ⊆ Lan.A

be an arbitrary family of languages over A. Let Pol.Fam denotes the least class of functions of the type:

p : (Lan.A)cn ⟼ Lan.A where n ≥ 0

which contains:

(1) all projections, i.e. functions of the form f.(X.1,…,X.n) = X.i for i ≤ n,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 25

(2) all functions with constant values in Fam,

(3) the union and concatenation of languages

and is closed over the composition (superposition) of functions.

Functions in Pol.Fam are called polynomials over Fam. Since all functions described in (1), (2) and (3)

are continuous, and a composition of continuous functions is continuous, all polynomials are continuous.

By an atomic language over A we shall mean any one-element language {w}, where w : A*. Polynomials

over an arbitrary set of atomic languages are called Chomsky’s polynomials. Below a few examples of such

polynomials:

p1.(X,Y,Z) = {b}
p2.(X,Y) = {b}
p3.(X,Y,Z) = X
p4.(X,Y,Z) = ({d}X{b}YY{c} | X) Z

Observe that for a complete identification of a polynomial we have to define its arity. This can be seen on the

examples of p1 and p2 which are different although return the same language.

Polynomials which do not “contain” union — e.g., such as p1, p2, and p3 — are called monomials. Since

concatenation is distributive over union, every polynomial may be reduced to a union of monomials.

An equational grammar over an alphabet A is any fixed-point set of equations of the form:

X.1 = p-1.(X.1,…,X.n)
…
X.n = p-n.(X.1,…,X.n)

where all p-i’s are Chomsky’s polynomials over A. Since polynomials are continuous, this set of equations

has a unique least solution (L.1,…,L.n). The languages L.1,…L.n are said to be defined by our grammar. We

also say that they are equationally definable.

As has been proved in [19], the class of equationally-definable languages is identical with the class of

context-free languages in the sense of Chomsky3. Such a class remains the same if we allow the operations

“*” and “+” in polynomials and if polynomials are built over arbitrary equationally-definable languages. For

proofs of all these facts, see [19].

Due to these facts in the sequel, equationally-definable languages will be called context-free.

2.7 A CPO of binary relations

Let A and B be arbitrary sets. Any subset of their Cartesian product A x B will be called a binary relation or

just a relation between these sets. Hence

Rel(A,B) = {R | R ⊆ A x B}

is the set of all binary relations between A and B. Instead of writing (a,b) : R, we shall usually write a R b.

If A = B, then instead of Rel(A, A) we write Rel(A). For every A we define an identity relation:

[A] = {(a, a) | a:A}

By Ø, we shall denote the empty relation. Let now

Boolean = {tt, ff} — logical values
p : A → Boolean — a predicate

With every predicate, we assign an identity relation defined by

3 Which means that for each equational grammar there exists an equivalent context-free grammar and vice versa.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 26

Id(p) = {(a, a) | p.a = tt}

If R : Rel(A,B), then

dom.R = {a | (Ǝ b : B) a R b} ― the domain of R
cod.R = {b | (Ǝ a : A) a R b} ― the codomain of R

Let P : Rel(A,B) and R : Rel(B,C). A sequential composition of P and R is a relation

P ● R : Rel(A,C)

defined as follows:

P ● R = {(a, c) | (Ǝ b : B) (a P b & b R c)}

For every two relations, their composition always exists, although it may be an empty relation. As is easy to

check ● is associative i.e.

(P ● R) ● Q = P ● (R ● Q)

It is, therefore, legal to write P ● R ● Q. We shall also write PR instead of P ● R whenever this does not

lead to misunderstanding, and we shall assume that composition binds stronger than union, hence instead of

(P ● R) | (Q ● S)

we write

PR | QS.

In the sequel, the sequential composition of relations will be frequently applied in the case where the com-

posed relations are function. In that case:

(P ● R).a = R.(P.a)

and therefore

(P ● R ● Q).a = (P ● (R ● Q)).a = Q.(R.(P.a)))

which means that in a sequential composition of functions, the composed functions are “executed” from left

to right one after another.

Similarly as for languages, also for relations, we define the operations of power, plus and star:

R0 = [A] identity relation in over A
Rn = RRn-1 for n > 0
R+ = U {Rn | n > 0}
R* = R+ | R0

The converse relation for R is defined as follows

 a R-1 b iff b R a

A relation R is called a function, if

for any a, b and c, if a R b and a R c, ten b = c.

If R and R-1 are functions, then R is said to be a convertible function or a one-one function. If P and R are

functions, then PR is also a function and

(PR).a = P.(R.a)

hence the composition of functions is their superposition.

The set of relations Rel(A,B) constitutes a CPO with ordering by set-theoretic inclusion and the empty re-

lation as the least element. All of the defined operations on relations are continuous. In the sequel we shall

frequently refer to the following theorem:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 27

Theorem 2.7-1 For any P, Q : Rel(A) the least solutions of equations

X = P | QX and

X = P | XQ

are respectively

X = Q*P and

X = P*Q

Moreover, if both P and R are functions with disjoint domains, then both these solutions are also functions.■

In this place, it is worth noticing that the set of partial functions

A → B

constitutes a chain-complete subset of (Rel(A,B), ⊆) that is closed under the composition of arbitrary func-

tions and union of functions with disjoint domains. Of course, both these operations are continuous.

Due to these facts, functions can be defined by fixed-point (recursive) equations. Since A and B are arbi-

trary, this is also true for functions of type

f : A1 → A2 → … → An

provided that appropriate constructors are defined. As a first example, consider a recursive definition of a

function of an n-th power of number 2, i.e.4.

power-of-two : Number → Number where Number = {0, 1, 2,…}
power-of-two.n = 2n for an integer n ≥ 0

A recursive definition of that function is as follows:

power-of-two.n =
 n = 0 ➔ 1
 n > 0 ➔ power-of-two.(n-1) * 2

This definition written as a fixed-point equation in the set-theoretic CPO

(Number → Number, ⊆, [])

is as follows

power-of-two = zero ⧫ (minus ● power-of-two) ● double

where

zero.n = [0/1]
minus.n = n-1 for n > 0
minus.0 = ?
double.n = 2 * n

Notice that all these functions are constants in our equation, hence the right-hand side of that equation repre-

sents a one-argument function in our CPO:

F.fun = zero ⧫ (minus ● fun) ● double

Since, as is easy to prove, ⧫ and ● are continuous on both arguments, our function F is continuous as well,

and therefore ― according to Kleene’s theorem ― the least solution of our equation is the limit (the union)

of the following chain of functions:

F.{ } = zero = [0/1]

4 Here we introduce a notational convention of VDM and MetaSoft where instead of using one-character symbols as in
usual mathematics, we use many-character symbols for both sets and functions. As we are going to see later, this
convention is practically a must in the case of denotational models where numbers of symbols goes into tens if not
hundreds.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 28

F.zero = zero ⧫ (minus ● zero) ● duble = [0/1, 1/2]
F.(F.zero) = zero ⧫ (minus ● F.zero) ● duble = [0/1, 1/2, 2/4]
…

Each element of that chain is a finite approximation of our function power-of-two.

Now let us consider a technically more complicated example of a two-argument function of power in the

set of natural numbers:

power : Number x Number → Number

power.n.m =
m = 0 ➔ 1
m > 0 ➔ n ٭ power.n.(m-1))

Also this definition can be expressed as a fixed-point equation in the CPO of binary relations:

Rel.(Number x Number, Number)

To see that, let us construct a fixed-point equation whose solution is the function:

power.(n, m) = nm

regarded as a relation in our CPO. Let us start from the definitions of a certain operation of composition of

functions

F, Q : Rel.(A x A, A). (2.7-1)

By the composition of F and Q on the second argument, we shall mean the relation

F  Q = {((a, b), c) | (∃d) ((a, b), d) : F and ((a, d), c) : Q}

If F and Q are functions then

[F  Q].(a, b) = Q.(a, F.(a, b))

The set of relations (2.7-1) is, of course, a CPO with set-theoretic inclusion. One can show that  is contin-

uous on both arguments. Since the limit of a chain is in our case the set-theoretic union, it is sufficient to

show that  is distributive over union on both arguments, which means that the following equalities hold (we

assume that  binds stronger than the union):

(F-1 | F-2)  Q = F-1  Q | F-2  Q and

F  (Q-1 | Q-2) = F  Q-1 | F  Q-2

Let then

 ((a, b), c) : (F-1 | F-2)  Q

which means that there exists a d such that

((a, b), d) : (F-1 | F-2) and ((a, d), c) : Q

which means that there exist i and d such that

((a, b), d) : F-i and ((a, d), c) : Q

which means that there exists i such that

((a, b), c) : F-i  Q

which means that

((a, b), c) : F-1  Q | F-2  Q

In this way, we have proved the inclusion

(F-1 | F-2)  Q ⊆ F  Q-1 | F  Q-2

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 29

The proofs of the remaining three inclusions are analogous.

Since  is continuous on both arguments the following fixed-point equation has the least solution:

power = zero | (minus  power)  times (2.7-2)

where:

zero(n, 0) = 1
minus.(n, m) = m-1 for m > 0, and for m = 0 this function is undefined
times.(n, m) = n٭m

Since the set-theoretic union and our composition are both continuous in the CPO of relations (2.7-1),
Kleene’s theorem implies that the solution of (2.7-2) is the limit of the chain of relation

 P0 ⊆ P1 ⊆ P2 ⊆ … (2.7-3)

which are functions defined in the following way:

P0 = zero
Pi+1 = (minus  Pi)  times for i ≥ 0

This means that for every i ≥ 0 function Pi is a partial function of power restricted to m ≤ i:

Pi.(n, m) =
 m ≤ i ➔ mi

 true ➔ ?

Since all these functions coincide on the common parts of their domains, the set-theoretic union of the chain

(2.7-3) is a function, and it is the power function.

2.8 A CPO of denotational domains

One of the main tools of denotational models of software systems are sets traditionally called domains. These

domains are most frequently defined using equations — sometimes fixed-point equations — based on func-

tions that are listed below. Some of them have been already defined, but we recall their descriptions to have

their full list in one place:

1. A | B ― set-theoretic union

2. A ∩ B ― set-theoretic intersection

3. A x B ― Cartesian product

4. Acn ― Cartesian n-th power
5. Ac+ ― Cartesian +-iteration
6. Ac* ― Cartesian *-iteration

7. FinSub.A ― the set of all finite subsets

8. A ⟹ B ― the set of all mappings including the empty mapping
9. A – B ― set-theoretic difference
10. Sub.A ― the set of all subsets

11. A → B ― the set of all functions from A to B
12. A ⟼ B ― the set of all total functions from A to B
13. Rel.(A,B) ― the set of all relations between A and B

These operators may be used in not-recursive equations, e.g.:

State = Identifier ⟹ Data (2.8-1)
InsDen = State → State instruction denotations

where InsDen denotes a domain of the denotations of instructions, or in fixed point equations, e.g.:

Record = Identifier ⟹ Data (2.8-2)
Data = Number | Record.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 30

Whereas definition (2.8-1) does not raises any doubts, in the case of (2.8-2) the situation is different. Since it

is obviously a fixed-point equation we have to prove the continuity of ⟹ and |, but the continuity where?

What is the CPO of domains? Set-theoretic inclusion is clearly its partial order, but what is the carrier?

Potentially that carrier should include all domains that we shall define in the future, hence something like

the set of all sets. Unfortunately — as has been known since 18995 — such a set does not exist6. Despite this

fact, our problem can be solved on the base of M.P. Cohn’s [48] construction. As he has shown, for any set of

sets B there exists a set of sets Set.B with the following properties:

1. all sets in B belong (as elements) to Set.B,

2. Set.B is closed under all our operations from 1) to 13),

3. Set.B is closed under unions of all denumerable families of its elements,

4. the empty set {} belongs to Set.B.

Following this construction, we choose as family B, the set of all “initial” domains that we shall use in our

model, such as Boolean, Number, Identifier, Character, etc. Since (Set.B, ⊆) is a set-theoretic CPO, we

can talk about the continuity of functions defined on sets in Set.B. As is easy to show operations from 1) to

8) are continuous, the difference of sets is continuous only on the left argument, and the remaining functions

are not continuous, and therefore they cannot appear in fixed-point equations7.

On this ground we can claim that the equation (2.8-2) a least solution)= defined by the theorem of Kleene

(Sec.2.4). Records defined in that way may “carry” other records, but of a “lower-level” than themselves. At

the end of that hierarchy, we have records carrying numbers. If however, we replace ⟹ by →, then we can’t

apply Kleene’s theorem to it. More on that subject in Sec. 3.1.

The fact that non-continuous operators can’t be used in a fixed-point context does not mean that they can-

not be used in fixed-point equations “at all”. For instance, our two sets of equations (2.8-1) and (2.8-2) can

be legally combined into one:

dat : Data = Number | Record (2.8-3)
rec : Record = Identifier ⟹ Data
sta : State = Identifier ⟹ Data
ind : InsDen = State → State

Although “as a whole” this is a fixed-point set of equations with one non-continuous operation, the recursion

is present only in the second and the third equation where the operators are continuous. This set of equations

is therefore “legal”, and the existence of its least solution is guaranteed by Kleene’s theorem.

5 The concept that a set of all sets does not exist is tied to Russell’s paradox, which was published by the British phi-
losopher and mathematician Bertrand Russell in 19011. However, the paradox had already been discovered inde-
pendently in 1899 by the German mathematician Ernst Zermelo. At the end of the 1890s, Georg Cantor, considered
the founder of modern set theory, had already realized that his theory would lead to a contradiction. (credit to Bing)

6 Formally speaking the attempt of constructing such a set leads to a contradiction. Indeed, let Z be the set of all sets.
Let then Ze be the set of all sets that are their own elements and Zn — the set of all sets that are not their own ele-
ments. Since obviously Z = Ze | Zn, set Zn must belong to either Ze or Zn. The first case must be excluded since in
that case Zn should belong to Zn. The second case is impossible either, since then Zn must not belong to itself. Intui-
tively speaking one can say that the collection of all sets is “to large to be a set”.

7 As an example, let us show that the operator → is not continuous. Let then A1 ⊂ A2 ⊂ …be an arbitrary chain of mu-
tually different sets, and let B be an arbitrary set. The sequence of domains A i → B constitutes a chain but none of its
elements contain a total function on the union UAi, hence none of such functions belong to U(Ai → B), which means
that U(Ai → B) ≠ UAi → B. In an analogous way we may show the non-continuity of the operators A ⟼ B and
Rel.(A,B). Notice, however, that U(Ai ⟹ B) = UAi ⟹ B, and similarly for the right-hand-side argument which means

that ⟹ is continuous on both arguments.

 The decision of not using non-continuous functions in fixed-point equations is due to the fact that Klenee’s theorem is
not satisfied in such cases, and, therefore, fixed-point equations do not correspond to recursion.

https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Russell%27s_paradox

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 31

2.9 Abstract errors

For practically all expressions appearing in programs, their values in some circumstances can’t be computed

“successfully”. Here are a few examples:

• expression x/y cannot be evaluated if the variables x or y have not been declared,

• expression x/y cannot be evaluated if the variables x or y have not been declared as numbers,

• expression x/y cannot be evaluated if the current value of y is zero,

• expression x+y cannot be evaluated if its value exceeds the maximal number allowed in current imple-

mentation; alternatively, if additions is a modulo operation, it will return an incorrect result,

• the value of the array expression a[k] cannot be computed if the variable a has not been declared as an

array or if k is out of the domain of a,

• the query “Has John Smith retired?” cannot be answered if John Smith is not listed in the database.

In all these cases, a well-designed implementation should stop the execution of a program and generate an

error message.

To describe such a mechanism formally, we introduce the concept of an abstract error. In a general case,

abstract errors may be anything, but in our models, they will be words, such as, e.g.

‘division by zero not allowed’.

They are closed in apostrophes to distinguish them from metavariables at the level of MetaSoft.

The fact that an attempt to evaluate the expression x/0 raises an error message can be now expressed by the

equation:

x/0 = ‘division by zero not allowed’

In the general case with every domain Data, we shall associate a corresponding domain with abstract errors

DataE = Data | Error

where Error is a universal set of all abstract errors that may be generated in course of the executions of our

programs. This set will be regarded as a parameter of our denotational model. Now, every partial operation

op : Data.1 x … Data.n → Data,

whose partiality is computable,8 may be extended to a total operation

ope : DataE.1 x … DataE.n ⟼ DataE

Of course ope should coincide with op wherever op is defined, i.e. if d.1,…,d.n are not errors and

op.(d.1,…,d.n) is defined, then ope.(d.1,…,d.n) = op.(d.1,…,d.n).

An operation ope will be said to be transparent for errors or simply transparent if the following condi-

tion is satisfied:

if d.k is the first error in the sequence d.1,…,d.n, then ope.(d.1,…,d.n) = d.k

This rule indicates that the arguments of ope are evaluated one-by-one from left to right, and the first error

(if it appears) becomes the final value of the computation.

The majority of operations on data that will appear in our models will be transparent. An exception are

boolean operations discussed in Sec. 2.10.

8 Partiality of a function f is computable, if there is an algorithm which for every element x can detect if f.x is defined or
not. In the examples of this section all functions have computable partialities. However, it is a well-known fact, that in
the general case the definedness of recursive functions is not computable. E.g. there is no algorithm which given a
program, and a memory state, will check whether the execution of this program starting from this state will terminate.
Consequently, we can’t assume that any undefinedness will be signalized by an error message.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 32

Error-handling mechanisms are frequently implemented in such a way that errors serve only to inform the

user that (and why) program evaluation has been aborted. Such a mechanism will be called reactive. Howev-

er, in some applications the generation of an error may initiate a recovery action. Such mechanisms will be

called proactive.

As we shall see in the sequel, a reactive mechanism may be quite simply enriched to a proactive one.

However, since the latter is technically more complicated, in the development of our example-language Lin-

gua, except Lingua-SQL, we shall most frequently apply a reactive model. Proactive constructions are dis-

cussed in Sec. 6.5.3 and Sec. 11.3.4.3.

A well-defined error-handling mechanism allows avoiding situations where programs hang up without any

explanation, or even worse — when they generate an incorrect result without warning the user (see Sec.

10.2).

2.10 Two three-valued propositional calculi

Tertium non datur — used to say ancients masters. Computers denied this principle.

In the Aristotelean logic, every sentence is either true or false. The third possibility does not exist. How-

ever, in the world of computers the third possibility is not only possible but inevitable. For instance the bool-

ean expression x/y > 2 may evaluate to true, false or error if y = 0. Error is, therefore, the third logical value.

To describe the error-handling mechanism in boolean expressions the basic domain of two boolean values

“true” and “false”:

Boolean = {tt, ff}

must be enriched by a third element

BooleanE = {tt, ff, ee}

where ee stands for “error” or an undefinedness caused by an infinite execution. Infinite executions in bool-

ean expressions may happen these expressions may include calls of functional procedures, which may loop.

We assume for simplicity that there is only one error element, since at the level of boolean expressions, all

errors will be treated in the same way9. How are we handling non-computable undefinednesses will be seen a

little later.

Let’s observe now that the transparency of boolean operators would not be an adequate choice. To see that

consider a conditional instruction:

if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi

We would probably expect that for x=0, one should execute the assignment x:=x-1. If however, our conjunc-

tion would be transparent, then the expression

x ≠ 0 and 1/x < 10

would evaluate to ‘division by zero not allowed’, which means that our program would abort. Notice also

that the transparency of and would imply

ff and ee = ee

which would mean that when an interpreter evaluates p and q, then it first evaluates both p and q ― as in

“usual mathematics” ― and only later applies and to them. Such a mode is called an eager evaluation.

An alternative to it is a lazy evaluation where, if p = ff, then the evaluation of q is abandoned, and the fi-

nal value of the expression is ff. In such a case:

ff and ee = ff

9 Precisely speaking that is the case of a reactive error elaboration, i.e. all errors, except undefinedness, are displayed
and abort program execution.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 33

tt or ee = tt

A three-valued propositional calculus with lazy evaluation was described in 1961 by John McCarthy [74],

who defined boolean operators as in Tab. 2.10-1.

or-m tt ff ee

tt tt tt tt

ff tt ff ee

ee ee ee ee

and-m tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ee ee

not-m

tt ff

ff tt

ee ee

Tab. 2.10-1 Propositional operators of John McCarthy

To see the intuition behind McCarthy’s operators consider the expression p or-m q assuming that its argu-

ments are computed from left to right10:

• If p = tt, then we give up the evaluation of q (lazy evaluation) and assume that the value of the

expression is tt. Notice that in this case we possibly avoid entering an infinite computation.

• If p = ff, then we evaluate q, and its value becomes the value of the expression; it also means that if

we enter an infinite execution, we remain in it. Here we also possibly avoid entering an infinite com-

putation.

• If p = ee, then this means that the evaluation aborts or loops at the evaluation of p, hence q will never

be evaluated. As a consequence, the final value of our expression must be the value of p. Note that in

this place the infiniteness is “signalized” by itself, and, therefore, its non-decidability doesn’t cause a

problem.

The rule for and is analogous. It is to be emphasised that McCarthy’s operators coincide with classical oper-

ators on classical values (grey fields in the table).

McCarthy’s implication is defined in a classical way, i.e. by a combination of alternative and negation op-

erators:

p implies-m q = (not-m p) or-m q

It is to be noted that not all classical tautologies remain satisfied in McCarthy’s calculus. Among those that

are satisfied we have11:

• associativity of disjunction and conjunction,

• De Morgan’s laws

and among the non-satisfied are:

• or-m and and-m are not commutative, e.g., ff and-m ee = ff but ee and-m ff = ee,

• and-m is distributive over or-m only on the right-hand side, i.e.

p and-m (q or-m s) = (p and-m q) or-m (p and-m s) however

(q or-m s) and-m p ≠ (q and-m p) or-m (s and-m p) since

(tt or-m ee) and-m ff = ff and (tt and-m ff) or-m (ee and-m ff) = ee

• analogously or-m is distributive over and-m only on the right-hand side,

• p or-m (not-m p) does not need to be true but is never false,

• p and-m (not-m p) does not need to be false but is never true.

10 The suffix “-m” stands for “McCarthy” and is used to distinguish McCarthy’s operators not only from classical ones
but also from the operators of Kleene, which are discussed later.

11 This claim is true only in the case of a single error element.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 34

On the ground of McCarthy’s calculus, we define in Sec. 6.4.1 the denotations of three-valued partial boolean

expressions.

An alternative to McCarthy’s propositional calculus is that of Kleene with operators defined in the follow-

ing way:

or-k tt ff ee

tt tt tt tt

ff tt ff ee

ee tt ee ee

and-k tt ff ee

tt tt ff ee

ff ff ff ff

ee ee ff ee

not-k

tt ff

ff tt

ee ee

Tab. 2.10-2 Propositional operators of Steven Kleene

In this case

tt or-k ee = ee or-k tt = tt
ff and-k ee = ee and-k ff = ff

In Kleene’s calculus whenever any argument of or-k is tt, then the result is tt, and analogously for and-k.

Due to this assumption, we gain commutativity of both operators, but if we want to evaluate boolean expres-

sions in this way, we had to compute both arguments of our operators “in parallel”. This that is hardly ac-

ceptable, we use McCarthy’s calculus in boolean expressions. If, however, we use a propositional calculus in

proofs rather than in computations, then Kleene’s calculus is more convenient. This is why we shall use it in

conditions that describe properties of programs (see Sec. 9.2).

Another case where we shall use Kleene’s calculus are special predicates called yokes (Sec. Sec. 4.4,

11.3.2.4 and 11.3.2.5), which are evaluated, but where procedures calls are not allowed.

2.11 Data algebras

Data types that are used in programs — such as integers, booleans, strings, arrays, lists, etc. — are usually

associated with some operations on them. For instance, a data type of integers may be associated with the

following arithmetical operations, and comparison predicates:

plus : IntegerE x IntegerE ⟼ IntegerE (2.11-1)
minus : IntegerE x IntegerE ⟼ IntegerE
times : IntegerE x IntegerE ⟼ IntegerE
divide : IntegerE x IntegerE ⟼ IntegerE

less : IntegerE x IntegerE ⟼ BooleanE
equal : IntegerE x IntegerE ⟼ BooleanE

where

int : IntegerE = Integer | Error
boo : BooleanE = {tt, ff} | Error

and where Integer is a set of integers representable in a current implementation.

A mathematical being that includes some sets and operations on them is called a many-sorted algebra.

The sets in the algebra are called its sorts, and functions — its constructors.

As we are going to see later, an algebra of data usually includes more than one sort, and with each sort it

includes some constructors. In our case we may add the following constructors of booleans:

or : BooleanE x BooleanE ⟼ BooleanE
and : BooleanE x BooleanE ⟼ BooleanE
not : BooleanE ⟼ BooleanE

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 35

Additionally, we may wish to add to our algebra zero-argument constructors that build some data “out of

nothing”:

create-zero : ⟼ IntegerE
create-one : ⟼ IntegerE
create-true : ⟼ BooleanE
create-false : ⟼ BooleanE

Such zero-argument operations are called constants. We may need constants in an algebra if we want our

algebra ro have reachable elements, i.e. elements generable by constructors. Note that without integer con-

stants we can’t generate “the first integer”. In turn, to do so we need only one constant create-one, since

once we have 1 we can generate all other integers and booleans.

Sometimes, for technical reasons, we may wish to have “superfluous” constants, although usually not in

the algebra of data. We will see such situations when building the algebras of denotations in Sec. 6.

Many-sorted algebras may be visualized graphically as in Fig. 2.11-1. For simplicity we included only

some operation of the algebra and used shorter names of constructors

Fig. 2.11-1 Graphical representation of a two-sorted algebra

2.12 Many-sorted algebras

Our algebra discussed in Sec. 2.11, let’s call it AlgIntBoo, is a two-sorted algebra and constitutes a particu-

lar case of many-sorted algebras. Such algebras will constitute one of our main tools in building denotational

models, and therefore, we shall briefly introduce their theory in this section and sections 2.13, 2.14, and 2.15.

Since this part of our book has an abstract mathematical character, we shall return for a while to traditional

typesetting of indices as ai rather than a.i.

By a many-sorted algebra we shall mean a tuple:

Alg = (Sig, Car, Fun, car, fun)

where

Sig = (Cn, Fn, ar, so) — is called the signature of the algebra,

Cn — is a finite set of words called the names of carriers;

these names are usually called the sorts of the algebra,

Fn — is a finite set of words that are the names of functions;

the functions themselves are called constructors

ar : Fn ⟼ Cnc* — with every name of a function fn there is associated a

finite (possibly empty) sequence of sorts

ar.fn = (cn1,…,cnk)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 36

called the arity of fn12

so : Fn ⟼ Cn — to every name of a function fn the function so assigns

a carrier name so.fn which is called the sort of fn,

Car — a finite set of carriers,

Fun — a finite set of total functions with arguments and val-

ues in carriers; these functions are called constructors,

car : Cn ⟼ Car — to every name cn of a carrier function car assigns a

corresponding carrier car.cn,

fun : Fn ⟼ Fun — to every function name fn such that

 ar.fn = (cn1,…,cnk)

 so.fn = cn

the function fun assigns a total function

 fun.fn : car.cn1 x … x car.cnk ⟼ car.cn

The concepts of arity and sort are applied not only to function names but also to the corresponding functions.

Functions in the set Fun are traditionally called constructors. The tuple ((cn1,…,cnk), cn) that describes the

arity and the sort of a constructor will be called the signature of that constructor.

Zero-argument constructors, i.e., constructors whose arity is an empty sequence, are called constants of

the algebra. If f is such a constant, then we write

f : ⟼ Carrier

and the unique value of f is written as

f.()

It should be emphasized that all constructors of an algebra are total functions. In our approach this is possible

due to the use of abstract errors (Sec. 2.9).

As we will see in the sequel, the signatures of many-sorted algebras have been introduced to describe the

derivation of syntax from denotations in constructing programming languages. For concrete algebras, e.g.,

such as discussed in Sec.2.11, the signature is implicit in a corresponding set of formulas (2.11-1).

Two many-sorted algebras are said to be similar if they have the same signature. In the future, we shall

frequently define concrete algebras by defining their carriers and constructors but without showing their

signatures explicitly. In that case, we shall say that two algebras are similar if it is possible to construct a

common signature for them.

Consider two algebras

Algi = (Sigi, Cari, Funi, cari, funi) for i = 1,2

with signatures

Sigi = (Cni, Fni, ari, soi) for i = 1,2

We say that Sig2 is an extension of Sig1 or that Sig1 is a restriction of Sig2, if

1. Cn1 ⊆ Cn2 and Fn1 ⊆ Fn2,
2. functions ar2, so2 coincide with ar1, so1 on Fn1.

We say that algebra Alg2 is an extension of algebra Alg1, if

12 The word „arity” comes from unary, binary, ternary etc.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 37

1. Sig2 is an extension of Sig1,
2. car1.cn ⊆ car2.cn for every sort cn : Cn1,
3. fun2.fn coincides with fun1.fn on the appropriate carriers for every fn : Fn1.

In other words, each (nontrivial) extension of an algebra results from that algebra by adding new carriers

and/or new constructors and/or new elements to the existing carriers.

If Alg1 and Alg2 are similar, then we say that Alg1 is a subalgebra of Alg2 if:

1. the carriers of Alg1 are subsets of the corresponding carriers of Alg2,
2. the constructors of Alg1 coincide with constructors of Alg2 on the carriers of Alg1.

For every algebra there exists its unique subalgebra (maybe empty), called the reachable subalgebra, that

includes only these elements of the algebra that can be generated by its constructors. If an algebra is identical

with its reachable subalgebra, then it is said to be reachable.

Another important concept associated with many-sorted algebra are many-sorted homomorphism between

them. By a many-sorted homomorphism from algebra Alg1 into a similar algebra Alg2 where we call a fami-

ly of functions

H = {h.cn | cn : Cn}

whose elements — called the components of that homomorphism — map the elements of Alg1 into the ele-

ments of Alg2, hence

h.cn : car1.cn ⟼ car2.cn for all cn : Cn

and where for every constructor name fn : Cn such that

ar.fn = (cn1,…,cnn) where n ≥ 0

and every tuple of arguments

(a1,…,an) : car1.cn1 x … x car1.cnn

the following equality holds

h.cn.(fun1.fn.(a1,…,an)) = fun2.fn.(h.cn1.a1,…,h.cnn.an) (2.12-1)

In other words a homomorphic image of the value of a function fun1.fn from the first algebra with arguments

(a1,…,an) equals the value of the corresponding function fun2.fn from the second algebra applied to the tuple

of homomorphic images of the first tuple i.e. applied to (h.cn1.a1,…,h.cnn.an). Notice that for n = 0 the

equality (2.12-1) has the form

h.cn.(fun1.fn.()) = fun2.fn.()

The fact that H is a homomorphism from Alg1 into Alg2 shall be written as:

H : Alg1 ⟼ Alg2

In the general case, homomorphisms do not map algebras onto algebras but into algebras, which means that

not every element in Alg2 must be an image of an element form Alg1. For instance an identity homomor-

phism from integers to numbers

I2N : (Integer, 1, plus, minus) ⟼ (Number, 1, plus, minus)

is not “onto”, whereas a homomorphism from integers into even integers

 I2E : (Integer, 1, plus, minus) ⟼ (Even, 1, plus, minus)

defined by the equality I2E.int = 2*int is “onto”. In the general case a homomorphism H : Alg1 ⟼ Alg2 is

called:

• a monomorphism — if all its components are one-to-one functions; e.g., I2N and I2E,

• an epimorphism — if all its components are “onto”; e.g., I2E

• an isomorphism — if it is both a monomorphism and an epimorphism; e.g., I2E.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 38

Theorem 2.12-1 For every homomorphism H : Alg1 ⟼ Alg2, the image of Alg1 in Alg2, i.e., the restriction

of Alg2 to the images through H of Alg1 with the appropriate truncation of constructors of Alg2 constitutes

a subalgebra of Alg2. ■

Proof To prove our theorem, we have to show that the images in Alg2 of the carriers of Alg1 are closed

under the operations of Alg2. Let then (b1,…,bn) from Alg2, be the image of (a1,…,an) in Alg1, i.e. let:

(b1,…,bn) = (h.cn1.a1,…,h.cnn.an)

Let furthermore for some function name fn

fun2.fn.(b1,…,bn) = b

We have to show that b has a coimage in Alg1. It is indeed the case since on the ground of (2.12-1):

fun2.fn.(b1,…,bn) = fun2.fn.(h.cn1.a1,…,h.cnn.an) = h.cn.(fun1.fn.(a1,…,an))

hence h.cn.(fun1.fn.(a1,…,an)) is the coimage of b in Alg1. ■

An algebra, which is the image of a homomorphism, Alg1 ⟼ Alg2 is called the kernel of the homomor-

phism H in Alg2.

All our investigations about homomorphisms can be generalized to the case where the signatures of two

algebras

Sigi = (Cni, Fni, ari, soi) for i = 1,2

are not identical but are similar in the sense that there exist two reversible functions of similarity

Sn : Cn1 ⟼ Cn2

Sf : Fn1 ⟼ Fn2

such that if

Sf.fn1 = fn2
ar1.fn1 = cn11,…,cn1p
ar2.fn2 = cn21,…,cn2m

then

p = m
Sn.cn1i = cn2i for i = 1;p

In other words, two signatures are similar if they have the same number of carrier names and function names,

and the corresponding function names have identical arities and sorts up to the names of carriers.

Now we can generalize the notion of the similarity of algebras: two algebras shall be called similar if their

signatures are similar. For any fixed functions, Sn and Sf the concept of homomorphism, and the corre-

sponding theorems remain valid for the generalized similarity.

2.13 Abstract syntax

Every signature

Sig = (Cn, Fn, ar, so)

unambiguously determines a certain algebra with that signature and with formal languages as carriers. This

algebra is called abstract syntax over signature Sig and will be denoted by AbsSy(Sig)13. The elements of

its carriers are words of a many-sorted formal language

13 The idea of an abstract syntax regarded as a mathematical idealization of a syntax of a programming language ap-
peared for the first time in papers of J. McCarthy [74] and P. Landin [66]. Abstract syntax was associated with ab-
stract algebras by J.A. Goguen, J.W. Thacher, E.G. Wagner and J.B. Wright [58]. A little later A.Blikle [29] used that

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 39

{Lan.cn | cn : Cn}

defined by an equational grammar (see Sec.2.6) in a way described below.

To every carrier name cn we associate a language denoted by Lan.cn. The family (tuple) of all these lan-

guages is defined by an equational grammar where for every cn : Cn we have the following equation14:

Lan.cn = {fn1} © {(} © Lan.cn11 © {,} © … © {,} © Lan.cn1n(1) © {)} |
… (2.13-1)
 {fnk} © {(} © Lan.cn1 © {,} © … © {,} © Lan.cnn(k) © {)}

Here fni for i = 1;k are function names with

so.fni = cn

and

ar.fni = (cni1,…,cnin(i)) for i = 1;k

We assume that if for a carrier name cn there is no function name fn such that so.nf = cn, then the corre-

sponding language is empty, i.e. its defining equation is:

Lan.cn = {}

For every non-empty Lan.cn, its elements are words of the form

fni(wi1,…,win(i))

i.e. of the form fni © (© wi1 © … © win(i) ©) where © is the concatenation of words and

wik : Lan.cnk.

As is easy to see, for every algebra Alg its abstract syntax algebra is reachable, although it may be empty if

there are no constants in Alg.

Since abstract syntaxes are generated from signatures, they may be associated with arbitrary algebras

(through their signatures). If Alg is an algebra with signature Sig, then AbsSy(Sig) will be called the ab-

stract syntax of algebra Alg. For instance, if AlgIntBoo is the two-sorted algebra described in Sec.2.11 then

the carrier of its abstract syntax are defined by the following equational grammar, where IntExp and BooExp

are languages of integer expressions and boolean expressions respectively:

IntExp = (2.13-1)
0 |
1 |
plus(IntExp, IntExp) |
minus(IntExp, IntExp) |
times(IntExp, IntExp) |
divide(IntExp, IntExp)

BooExp =

tt |
ff |
less(IntExp, IntExp) |
equal(IntExp, IntExp) |
or(BooExp, BooExp) |
and(BooExp, BooExp) |
not(BooExp)

concept in an attempt to give a formal semantics to a subset of Pascal . In his paper abstract syntax was technically
understood in a slightly different way than here, but the idea was roughly the same.

14 We assume, of course, that the commas “,” and the parentheses “(“ and “)” do not appear in the signature as con-
structors’ names.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 40

In this grammar, we use four notational conventions that we shall assume as standards for future use (cf. Sec.

2.1.1):

1. as already announced in Sec. 2.1.1, characters and words such as 0, 1, plus, (,) etc. that appear at the

level of syntax are typeset in Arial Narrow, whereas IntExp and BooExp are typeset in Arial, since they

are metavariables from the level of MetaSoft,

2. one-element sets are identified with their elements, i.e. instead of {a} we write a,

3. the values of zero-argument constructors are written without the empty tuples of arguments, i.e. we

write 1 instead of 1.().

4. the concatenation sign © is omitted, e.g., instead of a © b we write a b,

Examples of a numeric and a boolean abstract-syntax expressions written in this style are the following:

• plus(plus(minus(1,0),1),plus(1,1))

• or(less(plus(plus(minus(1,0),1),plus(1,1)),plus(1,1)),ff)

As we see, the expressions of our languages do not contain variables and are written in a prefix notation

where function symbols always precede their arguments. E.g., we write plus(1,1) instead of (1 plus 1). The lat-

ter style is called infix-notation.

In the syntactic algebra defined by our grammar, the elements of carriers are numeric and boolean expres-

sions, respectively (without variables), and constructors correspond to constructor names from our signature.

For instance, with a constructor name plus, we associate a constructor [plus] of the algebra AbsSy(Sig) de-

fined by the equation

[plus].[num-exp1, num-exp2] = plus(num-exp1,num-exp2)15

This constructor, given two expressions num-exp1 and num-exp2 returns the expression of the form

plus(num-exp1,num-exp2). E.g. given times(x,y) and plus(z,y) returns

plus(times(x,y),plus(x,y))

Now we can formulate a theorem which is fundamental for denotational models of programming languages.

Theorem 2.13-1 For every many-sorted algebra Alg with a signature Sig there is exactly one homomor-

phism H : AbsSy(Sig) ⟼ Alg. ■

Proof Every homomorphism H : AbsSy(Sig) ⟼ Alg must (from the definition) satisfy the equation:

H.cn.[fn(w1 , … , wn)] = fun.fn.[H.cn1.w1,…,H.cnn.wn]

where

ar.fn = (cn1,…,cnn)
so.fn = cn
wi : Lan.cni for i = 1;n

Since every word in abstract syntax is of a unique (for it) form fn(w1 , … , wn), the above equations (for all

fn) define the family {H.cn | cn : Cn} in an unambiguous way. In the case of empty carriers of AbsSy(Sig)
the corresponding components of H are empty. ■

The unique homomorphism from AbsSy(Sig) to Alg will be called the semantics of abstract syntax. For

instance, if by {In, Bo} we denote the semantics of abstract syntax of AlgIntBoo, then this homomorphism

maps boolean expression less(plus(1,1), times(1,1)) into boolean value ff:

Bo.[less(plus(1,1), times(1,1))] =
fun.less.(No.[plus(1,1)], No.[times(1,1)]) =
fun.less.(fun.plus.(No.[1],No.[1]), fun.times.([No.[1], No.[1])) =

15 The meta-parentheses “[“ and “]” are introduced in order to distinguish them from parentheses that belong to the
defined language.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 41

fun.less (fun.plus(1,1), fun.times(1,1)) =
ff

On the ground of theorems 2.12-1 and 2.13-1, in every algebra Alg, there is a unique subalgebra which is the

kernel of the semantics of abstract syntax of Alg. That algebra is the (unique) reachable subalgebra of Alg.

For instance, the reachable subalgebra of the algebra

(RealE, 1, plus, divide)

is the algebra of positive rational numbers

(PosRat, 1, plus, divide)

since only such numbers can be constructed from 1 in using plus and divide. Notice that if we remove 1

from this algebra, then its reachable subalgebra becomes empty and consequently its algebra of abstract syn-

tax will be empty as well.

Theorem 2.13-2 For any two similar algebras Alg1 and Alg2, if Alg1 is reachable, then there is at most one

homomorphism

H : Alg1 ⟼ Alg2,

and if this is the case, then the image of Alg1 in Alg2 is reachable. ■

Fig. 2.13-1 Reachable algebras

Proof. The theorem and its proof are illustrated in Fig. 2.13-1. Since Alg1 and Alg2 are similar, they must

have a common signature Sig and a common abstract syntax AbsSy(Sig). Therefore — on the ground of

Theorem 2.13-1 — there exist two unambiguously defined semantics of abstract syntaxes

D1 : AbsSy(Sig) ⟼ Alg1 and

D2 : AbsSy(Sig) ⟼ Alg2

Now, if there exists a homomorphism H : Alg1 ⟼ Alg2, then the composition

D1 ● H : AbsSy(Sig) ⟼ Alg2

defined as the composition of their components is a homomorphism. Since D2 is the unique homomorphism

between these algebras, we have

D1 ● H = D2,

and since Alg1 is reachable, the above equation defines H unambiguously, because otherwise, we could de-

fine another homomorphism from AbsSy(Sig) into Alg2 which would contradict Theorem 2.13-1. This

proves that the image of Alg1 in Alg2 is reachable. ■

As an immediate consequence of this theorem we have another theorem:

Theorem 2.13-3 For every nonempty algebra Alg over signature Sig the following claims are equivalent:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 42

(1) Alg is reachable,

(2) every homomorphism of the type H : Alg1 ⟼ Alg (for an arbitrary Alg1) is onto,

(3) the semantics of abstract syntax D : AbsSy(Sig) ⟼ Alg is onto. ■

Proof Let Alg be reachable and let for some Alg1 similar to Alg there exist a homomorphism

H : Alg1 ⟼ Alg,

and let

D : AbsSy(Sig) ⟼ Alg1

be the abstract-syntax semantics of Alg1. In that case

D ● H : AbsSy(Sig) ⟼ Alg

is the abstract-syntax semantics for Alg, hence, since Alg is reachable, then D ● H must be onto, and

therefore also H must be onto. Hence (1) implies (2). Now (3) follows from (2) as its particular case, and (2)

implies (1) by the definition of reachability. ■

At the end of this section, one more useful theorem:

Theorem 2.13-4 An algebra has a nonempty reachable subalgebra if and only if it contains at least one zero-

argument constructor. ■

Proof If there is a constant in the algebra, then it belongs to its reachable part, and hence, this part is not

empty. If, however, such o constant does not exist, then in the grammar corresponding to that algebra, there

are no constant monomials, and therefore all the carriers of abstract syntax are empty. Therefore the reacha-

ble part of Alg is an empty algebra. ■

Abstract syntaxes are, in general, not very convenient in practical programming, and therefore they are

usually replaced by more user-friendly syntaxes historically called concrete syntaxes. In such a case,

elements of abstract syntax correspond to parsing trees of concrete scripts (see, e.g. [3]).

2.14 Ambiguous and unambiguous algebras

An algebra Alg with a signature Sig is said to be unambiguous if its abstract-syntax semantics

D : AbsSy(Syg) ⟼ Alg

is a monomorphism, i.e., if for every carrier Car.cn of Alg and every element e of that carrier there is at

most one word w : Lan.cn in the abstract syntax AbsSy(Syg) such that

D.cn.w = e

Algebras which are not unambiguous will be called ambiguous.

Algebras of denotations of programming languages are practically always ambiguous. For instance, the

algebra AlgIntBoo described in 2.11 is ambiguous since, e.g., two different words plus(plus(1,1),1) and

plus(1,plus(1,1)) correspond to the same number 3.

Now consider two algebras Alg1 and Alg2 with a common signature Sig hence also with a common ab-

stract syntax SkAbs(Sig). Let

D1 : SkAbs(Sig) ⟼ Alg1

D2 : SkAbs(Sig) ⟼ Alg2

be two corresponding abstract-syntax semantics. Algebra Alg1 is said to be less (or equally) ambiguous than

algebra Alg2, that we shall writer as

Alg1 ≼ Alg2

if the homomorphism D2 is gluing not more than D1 (Fig. 2.14-1), i.e., if for any two words w1 and w2 in

abstract syntax that belong to the same carrier Car.cn the following implication holds:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 43

if D1.cn.w1 = D1.cn.w2 then D2.cn.w1 = D2.nn.w2

Intuitively speaking, whenever an element of Alg1 may be constructed in two different ways, the two ways

lead to the same element in Alg2.

Fig. 2.14-1 Two ambiguous algebras

Ambiguous algebras play an important role in the theory of programming languages since, for the majority of

existing languages, their algebras of concrete syntax — if formally described — would turn out to be ambig-

uous. To explain this fact assume that AbsSy(Sig) is defined by the grammar

IntExp = 0 | 1 | +(IntExp, IntExp),

Alg1 is an algebra of infix expressions without parentheses defined by the grammar

IntExp = 0 | 1 | IntExp + IntExp

and Alg2 is the algebra of integers. Let now D1 replaces prefixes by infixes and removes parentheses.

Anticipating the considerations of Sec. 3, the algebra of numbers is the algebra of denotations (of mean-

ings) for both our algebras of numeric expressions and the homomorphism D2 is the denotational homomor-

phism (the semantics) of the algebra of abstract syntax. Now, we may ask, if there exists a denotational ho-

momorphism

D12 : Alg1 ⟼ Alg2

from parentheses-free expressions into numbers.

To answer this question notice that for such algebras and their corresponding homomorphisms the follow-

ing equalities hold:

D1.[+(+(1,1),1)] = 1+1+1 D2.[+(+(1,1),1)] = 3

D1.[+(1,+(1,1)] = 1+1+1 D2.[+(1,+(1,1)] = 3

As we see D1 is gluing not more than D2. In “practical mathematics”, hence also in programming languages,

we frequently omit “unnecessary parentheses” when we deal with associative operations. The corresponding

algebras are, in general, ambiguous, and therefore, the denotational homomorphism D12 need not exist. If

however, they are not more ambiguous than the algebras of denotations, then such a homomorphism exist

which follows from the following theorem:

Theorem 2.14-1 If Alg1 and Alg2 are similar and Alg1 is reachable, then the (unique) homomorphism

D12 : Alg1 ⟼ Alg2 exists iff Alg1 ≼ Alg2. ■

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 44

This unique homomorphism may be constructed as (intuitively speaking) the composition of the inverse of

D1 with D2, i.e.

D12 = D1
-1 ● D2.

Although the inverse of D1 maps the elements of Alg1 into sets of abstract expressions, yet all these

expressions are mapped by D2 into the same element of Alg2. For a formal proof of this theorem, see [32].

Of course, if D1 is an isomorphism then Alg1 is “equally ambiguous” as Alg2, and therefore the homo-

morphism D12 exists.

2.15 Algebras and grammars

The first step in the process of programming-language construction consists in defining an algebra of denota-

tions from which we derive a unique algebra of abstract syntax. Since the latter is usually not user-friendly,

we transform it into a concrete syntax using a homomorphism that does not glue more than abstract-syntax

semantics. Since in a user manual concrete syntax should be described by an equational grammar, we should

raise a question, whether for any algebra of concrete syntax a corresponding grammar exists. To investigate

this problem, we need the concepts of a skeleton function.

A function f on words over an alphabet A is said to be a skeleton function if there exists a tuple of words

(w1,…,wk, wk+1) over A, called the skeleton of this function such that

f.(x1,…,xk) = w1x1…wkxnwk+1

An example of a skeleton function may be

f.(exp-b,ins1,ins2) = if exp-b then ins1 else ins2 fi

The skeleton of this function is (if, then, else, fi). Notice that the function

f.(exp-b, ins1, ins2) = if exp-b then ins2 else ins1 fi

is not a skeleton function since the order of arguments on the left-hand side of our equation does not coincide

with the order on its right-hand side.

In particular cases, a skeleton function may have more than one skeleton. E.g. the one-argument function

f : {a}* ⟼ {a}*

defined by equation

f.(x) = x a

has two skeletons ((), a) and (a, ()), since it may be equivalently defined by the equation

f.(x) = a x

However, if we change the type of the function f to f : {a, b}* ⟼ {a, b}* without changing the defining equa-

tion, then this function has only one skeleton ((), a).

A many-sorted algebra will be called a syntactic algebra if it is a reachable algebra of words.

A syntactic algebra will be called a context-free algebra if all its constructors are skeleton functions. Of

course, algebras of abstract syntax are context-free. As was shown in Sec. 2.13, for each such algebra, we can

build an equational grammar that defines its carriers and constructors. Similarly, we may assign an equational

grammar for any context-free algebra.

Theorem 2.15-1 For every context-free algebra, there is an equational grammar that generates is carriers. ■

The following theorem is also true:

Theorem 2.15-2 For every equational grammar there is a context-free algebra with carriers defined by that

grammar. ■

Proof Let

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 45

X1 = pol1.(X1,…,Xn)
…
Xn = pol1.(X1,…,Xn)

be an equational grammar with the (unique) solution (L1,…,Ln). Assume that the polynomials of that gram-

mar are expressed as unions of monomials. The corresponding algebra

Alg = (Sig, Car, Fun, car, fun),

is defined in the following way:

• Sig = (Nc, Nf, ar, so)

• Nc = {cn1,…,cnn} ― carriers’ names are arbitrary, but the number of these names must be equal to

the number of equations in the grammar,

• Nf = {fn1,…,fnm} ― function names are arbitrary, but the number of these names must be equal to the

number of monomial occurrences in the grammar,

• ar and so are defined in that way, that they correspond to the arities and sorts of monomials in the

grammar,

• Car = {L1,…,Ln},

• Fun ― the set of all monomials in our grammar,

• car.cni = Li for i = 1,…,n

Notice now that every mononomial in our grammar is (from the definition) a Chomsky’s mononomial (see

Sec. 2.6), hence satisfies the equation:

car.cni(x1,…,xn) = {s1} x1 … {sk} xk {sk+1)

This completes the definition of our algebra. Observe that the defined algebra is unique up to the names of

carriers and constructors.

We can show that the carriers of Alg are closed wrt all its constructors and that the algebra is reachable.

For proof see [32]. ■

Below is a simple example showing how to construct an algebra from a grammar. Consider the following

grammar of a two-sorted language

Number = 1 | x | Number + Number

Boolean = Number < Number | Boolean & Boolean

For simplicity, curly brackets for function names have been dropped. The operations of our grammar are de-

fined by the following equations (the symbols of concatenation © has been omitted as well) where n-exp and

b-exp with indexes denote numerical and boolean expressions, respectively:

one.() = 1

variable.() = x

plus.(n-exp1, n-exp2) = n-exp1 + n-exp2

less.(n-exp1, n-exp2) = n-exp1 < n-exp2

and.(b-exp1, b-exp2) = b-exp1 & b-exp2

An equational grammar is said to be unambiguous (resp. ambiguous) if the corresponding algebra is unam-

biguous (resp. ambiguous). Intuitively a grammar is ambiguous if there exists a word w that can be generated

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 46

by that grammars in two different ways16. These “different ways” are different elements of the abstract syn-

tax that are coimages of w wrt the abstract-syntax semantics (see Sec. 2.13). For instance, the word 1+1+1

may be generated in two different ways:

plus(1,plus(1,1)

plus(plus(1,1),1)

As has been already mentioned, a concrete syntax of a programming language will be constructed as a

homomorphic image of its abstract syntax. Since these syntaxes will be described by equational grammars, it

is important to know which homomorphisms of syntactic algebras do not lead out of the class of context-free

algebras.

Let us start with an example of a homomorphism that destroys the context-freeness of an algebra. Let Alg

be a one-sorted algebra with the carrier {a}+ and with two operations:

h.() = a

f.(x) = x a

This algebra is of course, context-free. Now consider a similar algebra with a carrier

{anbncn | n = 1,2,…}

and constructors

h.() = abc

f.(anbncn) = an+1bn+1cn+1

This algebra is not context-free since its carrier is a well-known example of a not context-free language (see

[55]), but it is isomorphic with our former algebra where the corresponding isomorphism is:

I.an = anbncn for every n ≥ 1

As is easy to see this isomorphism is not a skeleton function.

A homomorphism H between two syntactic algebras is called a skeleton homomorphism (we recall that

since syntactic algebra are reachable, such a homomorphism, if exists, is unique (Theorem 2.13-3)) if for

every constructor fun.fn of the source algebra, for which

so.fn = cn

ar.fn = (cn1,…,cnn)

there exists a skeleton (s1,…,sn+1), such that

H.fn.(fun1.fn.(x1,…,xn)) = s1 x1…snxnsn+1

In other words, a homomorphic image of every constructor of the source algebra is a skeleton constructor in

the target algebra.

Theorem 2.15-3 For every syntactic algebra Alg the following facts are equivalent:

(1) Alg is context-free,

(2) every homomorphism into Alg is a skeleton homomorphism,

(3) there exists a skeleton homomorphism into Alg.

For proof, see [19].

16 The usability of ambiguous grammars also from the perspective of parsing was investigated in 1972 by

A.V. Aho and J.D. Ullman in [3].

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 47

Let us consider now a simple example of a process of constructing a syntactic algebra for a given alge-

bra17. Let the latter be a one-sorted algebra of numbers with three operations:

create-nu.1 : ⟼ Number

plus : Number x Number ⟼ Number

times : Number x Number ⟼ Number

The corresponding abstract syntax, denote it by Syn-0, is defined by the following grammar with only one

equation, where Exp denotes a language of numerical expressions with constant values:

Exp = create-nu.1.() | plus(Exp, Exp) | times(Exp, Exp)

The first step on our way to final syntax consists in:

• replacing create-nu.1 by 1,

• replacing plus and times by + and *,

• replacing prefix notation by infix notation.

This step corresponds to the following homomorphism:

H.[create-nu.1.()] = 1

H.[plus(exp1,exp2)] = (H.[exp1] + H.[exp2])

H.[times(exp1,exp2)] = (H.[exp1] ٭ H.[exp2])

This is of course a skeleton homomorphism and the corresponding context-free grammar is the following:

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp)

In the second and the last step of syntax construction we would like to allow dropping out “unnecessary pa-

rentheses”, e.g. writing 1+1+1 instead of (1+(1+1)) and analogously for multiplication. Unfortunately this turns

out to be impossible since each homomorphism which removes parentheses has to satisfy the equations:

H.[(exp1 + exp2)] = H.[exp1] + H.[exp2]
H.[(exp1 ٭ exp2)] = H.[exp1] ٭ H.[exp2]

but this would mean that it glues expressions with different denotations, e.g.

H.[(1+1)*(1+1)] = H.[((1+(1*1))+1)] = 1+1*1+1

Although H is a skeleton homomorphism, which implies that its target grammar

Exp = 1 | Exp + Exp | Exp * Exp

is context-free, the corresponding algebra is more ambiguous than the algebra of integers, hence a denota-

tional semantics of this syntax into the algebra of numbers does not exist.

A known traditional way of solving this problem as e.g. in Algol ([7] and [80]) or in Pascal [62] consists

in reconstructing the whole model of the language by introducing to the algebra of denotations and to the

algebra of syntax three carriers Com (component), Fac (factor) and Exp (expression) and the following sig-

nature:

c-to-e : Com ⟼ Exp component to expression identically

+ : Exp + Com ⟼ Exp addition

f-to-c : Fac ⟼ Com factor to component identically

* : Fac * Com ⟼ Com multiplication

1 : Fac ⟼ Fac the generation of 1 as a factor

e-to-c : Exp ⟼ Fac expression to factor identically

17 In more general terms such processes will be discussed in Sec. 3.4.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 48

The corresponding grammar of abstract syntax is the following:

Exp = c-to-e(Com)| +(Exp, Com)
Com = f-to-c(Fac) | *(Fac, Com)
Fac = 1 | (Exp)

and for the first (isomorphic) transformed syntax:

Exp = (Com) | (Exp + Com)
Com = (Fac) | (Fac * Com)
Fac = 1 | (Exp)

In this grammar the names of identity functions have been omitted, which, however, does not destroy the

unambiguity of the grammar, since these names appear in the elements of different carriers.

Now we can define a skeleton homomorphism that removes parentheses in each of three sorts of expres-

sions:

E.[(val)] = val
E.[(val + exp)] = E.[exp] + S.[val]
C.[(fac)] = C.[fac]
C.[(fac ٭ val)] = F.[fac] ٭ C.[val]
F.[1] = 1
F.[(exp)] = (exp)

This leads to the following context-free grammar

Exp = Com | Exp + Com
Com = Fac | Fac ٭ Com
Fac = 1 | (Exp)

This grammar may be also written in a direct way in using the constructor of iteration:

Exp = Com [+ Com]* an expression is a sum of components

Com = Fac [٭ Fac]* a component is a multiplication of factors18

Fac = 1 | (Exp) a factor is a constant or an expression in parentheses

Observe that the parentheses-removal homomorphism is not an isomorphism, since it glues (1+(1+)) and

((1+1)+1) into 1+1+1 and similarly for multiplication. However it does not glue “to much” since addition and

multiplication are associative. On the other hand from expression ((1+1)*(1+1)) it removes only external paren-

theses.

The denotational homomorphism for our grammar is now the following:

Se.[val] = Ss.[val]
Se.[exp + val] = Se.[exp] + Sc.[val]
Ss.[fac] = Sc.[fac]
Ss.[fac ٭ val] = Sc.[fac] ٭ Ss.[val]
Sc.[1] = 1
Sc.[(exp)) = Se.[exp]

Notice that the above equations express the school rules of priority of multiplication over addiction.

Commentary 2.15-1

The reader to whom we have promised that denotational models of programming languages will offer readable defi-
nitions may have some doubts in this moment. So far, the simple language of arithmetic expressions that is very
well known to every ground-school student has been described in a rather complicated way and moreover using
advanced mathematics. This, of course, requires a commentary.

First, what we can say to a student in a simple way, when “talking” to a computer, we have to express in a way

18 Note the difference between the operation of multiplication ٭, e.g. as in 11٭ and the operation of the iteration of lan-

guages *, e.g. as in [+ Com]*.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 49

appropriate for the interpreter. That “appropriate way” is a denotational homomorphism, which may be mapped one-
to-one into a code of an interpreter.

Second, the discussed language serves only to illustrate the denotational method in an elementary example.
The real advantage of the method will be appreciated (we hope) when we introduce more advanced programming
mechanisms such as declarations, types, instructions, recursive procedures, objects, etc. whose definitions require
more advanced mathematical tools.

Third, in writing a user’s manual for our language, we may directly refer to our acquaintance with school math-
ematics by saying that numerical expressions can be written and are calculated in a “usual way”, which frees us
from the necessity of showing a grammar. However, as we shall see in Sec. 3.4 there are better solutions to that
problem called colloquial syntax.

Two following lessons may be learned from our exercise:

First, the description of the simple operation of dropping out unnecessary parentheses requires rather

complicated and not very intuitive grammar. Such a grammar is necessary for the implementor but not for the

user, who can be simply informed that numerical expressions are written and understood in a “usual way”.

Second, the idea of dropping parentheses came out only at the level of second syntactic algebra, when the

two formers have already been defined. Therefore, to implement the parenthesis-free notation one has to re-

start the construction of the model from scratch. In our simple example, this does not lead to too much work,

but in real situations, things may look different. To avoid such problems, one should think about syntax as

early as on the level of the algebra of denotations. This, however, contradicts the philosophy “from denota-

tions to syntax” and also ruins the principle that denotations should be constructed in a maximally simple

way.

The above problems were investigated in [30], [32] and [40]. A solution suggested there consists in as-

suming that the programmer’s syntax that will be called colloquial syntax does not need to be a homomor-

phic image of concrete syntax. In our example concrete syntax would be defined by the grammar:

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp)

and colloquial syntax ― which allows for (although it does not force) the omission of parentheses ― would

be defined by the grammar:

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) | Exp + Exp | Exp ٭ Exp

Observe that the algebra of colloquial syntax is not only not-homomorphic to the former but is even not simi-

lar since it has a different signature (has more constructors).

Note, however, that it is easy to define a transformation that would map our colloquial syntax “back” into

concrete syntax by adding the “missing” parentheses. Such a transformation will be called a restoring trans-

formation. In practice, this approach leads to a user manual that contains a formal definition of concrete syn-

tax (a grammar) plus an informal rule which says, e.g., that parentheses may be omitted in the “usual way”19.

In the general case, a restoring transformation may be described formally or informally according to the

complexity of colloquialization. Its formal definition is, however, always necessary for implementors who

have to write a procedure that converts each colloquial program into its concrete version.

More on colloquial syntax in Lingua in Sec. 7.4.

In the end, one methodological remark seems necessary. Languages discussed in this section covered only

expressions without variables. Such a case has, of course, no practical value, and it was chosen only to make

examples of algebras and corresponding grammars possibly simple. Starting from Sec. 3.5 we shall discuss

methods of constructing denotational models for more realistic languages.

2.16 Abstract-syntax grammar is LL(k)

Our equational grammars are equivalent to (well known in the literature) context-free grammars and the latter

play an important role in the theory of the syntax of programming languages. Especially wanted context-free

19 As we are going to see in Sec. Sec. 7.2 and 7.3 the situation may be a little more complicated.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 50

grammars are LL(k) grammars, since their corresponding parsers are efficient and simple to build. To show

that our abstract syntax grammars are LL(k), let’s redefine this concept for equational grammars.

Consider an arbitrary equational grammar EG that generates a tuple of languages (Lan-1,…,Lan-n) over

an alphabet Ter of characters called terminals. The elements of Lan-i’s will be called words. Every equation

of EG is the following formula

Syn-i = w-i1 | … | w-ip(i) for 1≤ i ≤ n (7.2-1)

where:

• Syn-i are metavariables corresponding to syntactic domains; we shall call them nonterminals,

• w-ij are metawords written over an alphabet Alp = Ter | {Syn-1,…,Syn-n},

Our grammar will be said to be strongly prefixed, if every w-ij is not empty, and starts with a terminal. Let’s

define an auxiliary function of the k-the prefix of a word (a-1,…,a-n):

prefix : Alpc* x {1, 2, …} ⟼ Alpc*
prefix(w, k) =
 w = () ➔ ()
 let
 (a-1,…,a-n) = w
 n ≤ k ➔ w
 true ➔ (a-1,…,a-k)

For a positive integer k, a strongly prefixed grammar with equations (7.2-1) is said to be a LL(k) grammar20,

if for every index 1≤ i ≤ n, any two different metawords in the i-th equation, w-ij and w-ip, have different k-

th prefixes, i.e., prefix(w-ij, k) ≠ prefix(w-ip, k). Note that metawords of different equations do not need to

satisfy this condition.

In a LL(k) grammar, given a word w to be parsed, and a non-terminal Syn-i that determines the category

of this word, we need to look ahead not more than k first characters of w to identify the grammatical clause to

be used in parsing w. This property of LL(k) grammars allows to build for them relatively simple determinis-

tic parsers.

As is easy to check, our abstract-syntax grammar is LL(k) for some k, since all green prefixes of clauses

are different to each other.

20 The original concept of a LL(k) grammar is not restricted to strictly prefixed grammar, but in that case the definition is
a little more complicated, and requires the introduction of some additional concepts. On the other hand, the restriction
to strictly prefixed grammar is not harmful for our model, since our abstract-syntax and concrete-syntax grammars will
be strictly prefixed anyway.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 51

3 AN INTUITIVE INTRODUCTION TO DENOTATIONAL

MODELS

3.1 How did it happen?

Mathematicians building mathematical models of programming languages were usually assuming (as in

mathematical logic) that a programming language should be described by three mathematical entities:

1. Den — denotations, which in our model constitute a many-sorted algebra (Sec. 2.12),

2. Syn — syntax, which in our model is an algebra similar to the former (has the same signature),

3. Sem : Syn ⟼ Den — semantics, that associates denotations to syntactic elements, and in our model

is a homomorphism between two mentioned algebras.

Intuitively speaking, a denotational semantics describes the meaning of every complex syntactic object as a

composition of the meanings of its components. This property of semantics — called compositionality —

allows for the description of complex objects by means of so-called structural induction.

It should be mentioned in this place that denotational (compositional) models of semantics — which for

mathematicians have always been an obvious choice — have not been used in the first formal models of

programming languages. Similarly to the prototypes of sewing machines that were mechanical arms repeated

the movements of a tailor, and to the first steamboat engine droving oars, the early formal definitions of pro-

gramming languages were mathematical descriptions of virtual computers executing programs21.

Such model of semantics, called later operational semantics, were abandoned after a few years of

experiments because descriptions of virtual machines were not less complex than the codes of a compilers,

and still they weren’t descriptions of “real” machines22.

However, the road to denotational semantics wasn’t simple either. As was already mentioned, early deno-

tational models of programming languages were characterized by great mathematical complexity. Technical-

ly it was the consequence of the assumption that two following mechanisms were indispensable in high-level

programming languages:

1. the jump instruction goto that transfers program execution from one line of code to another one; this

mechanism was available in practically all programming languages in the years 1960/70, and was in-

herited from low-level languages, where it was the only tool for building logical structures of pro-

grams,

2. procedures that may take themselves as parameters; this construction was present in Algol 60 (see

[7]) considered by academic community of 1960. as an indisputable standard.

21 First metalanguage used to write such semantics in the 1970. was developed in IBM laboratory Vienna and was
called Vienna Definition Language (VDL). Later some members of the IBM team have created a lab on the Danish
Technical University in Lyngby with the aim of writing a denotational semantics in a metalanguage called Vienna De-
velopment Method (VDM) [15]. This language was used, among other applications, to describe the semantics of two
programming languages — Ada and Chill. In the case of the former, that was expected to become a universal pro-
gramming language of all times, the process of writing its semantics resulted in repairing many inaccuracies of the
language, and in developing first Ada compiler. Unfortunately, both Chill and Ada were excessively complex, and
hence have never became commonly used.

22 To be precise this remark is true for sequential programming only, i.e. without concurrency. An operational semantics
for concurrent programs was developed by Plotkin [81].

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 52

Fig. 3.1-1 Steamboat moving oars

The requirement of having goto’s has led to a technically rather complex model of continuations23. That se-

mantics was not only technically complex but above all quite far from programmers’ intuition. Independent-

ly, at the turn of the 1960-ties to 1970-ties, IT professionals began to be aware of a risk imposed by goto in-

struction (see [49]). Programs with goto’s were difficult to understand, and therefore not always behave as

expected. As a consequence goto’s were abandoned in favor of structural programming mechanisms such as

if-the-else, while-do-od and similar.

The continuation model, although technically complex, was based on a traditional mathematics. This can’t

be said about the model of procedures that take themselves as parameters. Notice that in this case we do not

talk about recursive procedures that call themselves in their bodies — such a mechanism is described in this

book by fixed-point equations — but about constructions of the type f.f, where a function takes itself as an

argument. Such functions were not known to mathematicians, because they can’t be described on the ground

of classical set theory, let alone that mathematicians never needed such functions.

In Algol 60 the construction f.f was implemented in such a way, that a procedure f was receiving as a pa-

rameter not exactly itself, but a copy of its own code, which was inserted into its body during compilation.

Such an operation was called copy rule. Mathematicians of the decade of 1960. were fascinated by this

construction because it was challenging the existing concept of a function. As a consequence, the theory of

reflexive domains was created by Dana Scott and Christopher Strachey [84] and was later described in detail

by J.E. Stoy in a monograph [83]24. Although some mathematicians were investigating reflexive domains, for

software engineers this theory was even more difficult, and less intuitive then continuations. Pretty soon it

turned out also that the self-applicability of procedures was even more error-prone than the use of goto’s.

Consequently, in later programming languages, self-applicable procedures were abandoned. Unfortunately,

some researchers decided that denotational semantics should be abandoned as well.

In the denotational model discussed in this book we use neither continuations nor reflexive domains. In

our model the denotations of instructions are state-to-state functions where a state “carriers” everything that a

program needs to be executed: data, types, procedures, classes etc. Simplifying a little a state is a function

23 First author who introduced that concept — although under a different name of tail functions — was Antoni Mazur-
kiewicz [71]. Under the name of continuations it was introduced in [84]Błąd! Nie można odnaleźć źródła odwoła-
nia. and later and popularized in [83].

24 To our colleagues mathematicians we may explain that the idea of reflexive domains was in fact a “hidden realiza-
tion” of copy rule. The authors of this model used the fact that functions definable by programs are computable,
hence can be "numbered" with natural numbers — each function f may be given a unique number n(f). In this model
f(f) meant f(n(f)) which can be modelled on the ground of classical set theory. That was in fact a mathematical appli-
cation of copy rule since n(f) may be regarded as the code of procedure f.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 53

that maps identifiers into these mathematical items. The concept of a state is a natural generalization of a

concept of a valuation known by mathematicians since the pioneering works of Alfred Tarski [85]. Tarski

defined the meanings of expressions as functions mapping valuations of variables

val : Valuation = {x, y, z} → Value

into values. E.g., the meaning of an expression

2x+4y

was a function

F.[2x+4y] : Valuation → Number

such that

F.[2x+4y].val = 2*val.x + 4*val.y

From there only one step to an observation that the meaning of an instruction

x := 2x + 4y

is such a transformation of valuations where the value of x in the new valuation is the value of the expression

2x+4y in the former. This idea was applied in [18], published in 1971, where Andrzej Blikle described a pro-

totype of a denotational semantics of a very simple programming language.

In turn, the inspiration to abandon the model of reflexive domains came to me from the book of Michael

Gordon [59], where the author treats Scott’s reflexive domains as “usual sets” with the following commen-

tary on page 29:

We shall not discuss the mathematics involved in Scott’s theory at all; our approach to recursive equa-

tions25 is similar to an engineering approach to differential equations, namely we assume they have solutions

but don’t bother with the mathematical justification.

Andrzej Blikle read Gordon’s book in the year 1981 during a train ride from Copenhagen to Århus, where

he was going to meet Peter Mosses, a strong proponent of the theory of Dana Scott. The book was, for him, a

significant breakthrough since, for the first time, he was reading a semantics of a programming language with

an understanding not only of its mathematics but also of its IT content. The treatment of reflexive domains as

"usual sets" was a real simplification. He also had the impression that this informal treatment did not lead to

any mathematical problems. Only later, he realized that Gordon was actually not dealing with self-applicable

functions.

The approach of Michael Gordon, although intuitively simple, was mathematically not entirely acceptable

since reflexive domains are not “usual” sets. It wasn’t, therefore, clear, whether his model did not include

inconsistencies.

To cope with this problem, A.Blikle and A. Tarlecki published in 1983 a paper [39], in which they con-

structed a denotational model of a programming language, where the domains of denotations are sets, and the

denotations of instructions are state-to-state transformations. This approach stimulated in 1980-ties the crea-

tion of a metalanguage MetaSoft [29] in the Institute of Computer Science of the Polish Academy of Scienc-

es. And this is the approach that we shall discuss and further developed in this book.

3.2 From denotations to syntax

All early works on the semantics of programming languages were devoted to building semantics for existing

languages. This fact has led to a tacit assumption that in designing a language, the syntax should come first

into the play. Of course, there is a certain logic in this way of thinking, since how can we build a model for

25 M. Gordon is talking here about recursive domain-equations, which, in some case of non-continuous domain opera-
tors, lead to D. Scott’s reflexive domains.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 54

something that does not yet exist? After all, astronomers were describing the mechanics of celestial bodies

when the Sun and the planet were already there.

This way of thinking has, however, a particular vulnerability, since computer science cannot be compared

to astronomy, physics, or biology, where we describe the world around us. Building a programming language

is an engineering task, such as constructing a bridge or an airplane. Would any engineer ever think of first

constructing a bridge basing on common sense and only then making all necessary calculations? Such a

bridge would certainly collapse.

In our approach, we reverse the traditional order where one first builds a syntax, and only later defines its

meaning. We will build a language starting from an algebra of detonation from which syntax will be derived

in such a way that a denotational semantics exists. This construction was sketched in Sec. 2.13.

An experimental programming language developed in this book is called Lingua. This Italian name has

been suggested by Andrzej Blikle to commemorate the circumstances under which — working as a scholar of

Italian government from October to December 1969 — he wrote his habilitation thesis later published in Dis-

sertationes Mathematicae [18]. During three months in the Istituto di Elaborazione dell’Informazione in Pisa

he described a denotational semantics of a very simple programming language, although he didn’t call his

semantics in this way. The name “denotational semantics” was used for the first time in a joint work by D.

Scott and Ch. Strachey [84]. Only eighteen years later, in the year 1987, Andrzej Blikle described (in [30])

the idea of deriving syntax from detonations.

3.3 Why we need denotational models of programming languages?

A denotational model of a programming language serves as a starting point for the realization of three tasks:

1. building an implementation of the language, i.e., its interpreter or compiler,

2. creating rules of building correct specified programs in this language,

3. writing a user manual.

When designing our language in this book, we shall observe two fundamental (although not quite formal)

principles:

First Principle of Simplicity

A programming language should be as simple to understand and easy to use as possible without

harming its functionality, mathematical clarity, and completeness of its description.

Second Principle of Simplicity

The same applies to the manual of the language and to the rules of building correct programs.

These principles shall be fulfilled by:

1. making the syntax of the language as close as possible to the language of “usual” mathematics, e.g.,

whenever it is common, we allow infix notation and the omission of “unnecessary” parentheses,

2. making the semantics of the language easy to understand by the user rather than convenient for the

implementor; for the latter, an equivalent implementation-oriented model may be written.

3. making the structure of the language (i.e., program constructors) leading to possibly simple rules of

constructing correct programs (Sec. 8 and Sec. 9),

Particular attention should be given to point 3. because the simplicity of the rules of building correct pro-

grams leads to a better understanding of programs by programmers. This fact was realized already in the dec-

ade of 1970. and has led to the elimination of goto instructions. This decision led to a significant simplifica-

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 55

tion of program structures, which increased their reliability. On the other hand, it did not limit the functionali-

ty of programming languages.

Following point 3, we will sometimes — as typical in mathematics — "forget" about the difference be-

tween syntax and denotations. E.g., we will talk about the value of an arithmetic expression x + y, rather than

about the value generated by its denotation. We will say that the instruction x:=y+1 modifies the value of x,

instead of saying that the denotation of this instruction modifies a memory state at variable x, etc. Of course,

at a formal level, we shall precisely distinguish syntax from denotations.

3.4 Five steps to a denotational model

Building up Lingua, we refer to an algebraic model described in Sec. 2.11 to Sec. 2.16. It corresponds to the

diagram of three algebras shown in Fig. 3.4-1. We build it in such a way that the equation:

A2D = A2C ● C2D

is satisfied, which guarantees the existence of a denotational semantics of our language.

The construction of a denotational model begins with a description of an algebra of detonation AlgDen.
Then from the signature of AlgDen we derive an algebra of abstract syntax AlgAbsSyn, and, precisely

speaking a context-free grammar that describes this algebra. The first of these steps is creative since it com-

prises all the significant decisions about a future language. In turn, the second step can be performed algo-

rithmically.

Since abstract syntax is usually not convenient for programmers, we build an algebra of concrete syntax

AlgConSyn. In typical situations, we do it by replacing prefix notation by infix notation and introducing

more intuitive names of constructors. In our approach the corresponding abstract-to-concrete homomorphism

A2C will be an adequate homomorphism, which guarantees the existence of a unique homomorphism:

C2D : AlgConSyn ⟼ AlgDen

(concrete semantics), which is the semantics of concrete syntax. In this way, we create the main components

of our denotational model.

Fig. 3.4-1 Basic algebraic model of a programming language

The step from abstract syntax to concrete syntax is creative — although rather simple. For instance, instead

of writing +(a, b) we write (a + b) and instead of writing

if.(greater.(x, 0), assign.(x, plus.(x, 1)), assign.(x, minus.(x. 1)))

we write

if x>0 then x:=x+1 else x:=x-1 fi

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 56

The next step in building a user-friendly syntax consist in introducing so called colloquialisms. For instance

instead of writing

(a+(b+(c*d))

we shall write

a + b + c*d

assuming that multiplication binds stronger than addition, and that “the remaining” parentheses are added

from left to right. The introduction of colloquialisms into concrete syntax leads to an algebra of colloquial

syntax ColSyn (Fig. 3.4-2), which most frequently has a different signature than concrete syntax, and there-

fore can’t be a homomorphic image of it. However, we make sur that there exists an implementable restoring

transformation

RES : AlgColSyn ⟼ AlgConSyn

that transforms colloquial syntax back to the concrete one, e.g., by adding the missing parentheses.

Fig. 3.4-2 An algebraic model of a language with colloquial syntax

In a programmer’s manual, a language with colloquialisms is described by a grammar of concrete syntax

with additional clauses and a restoring transformation (Sec. 7.4). For instance, we explain that in writing

arithmetic expressions, we can skip parentheses while maintaining the priority of multiplication and division

over addition and subtraction.

In such a case, an implementor receives a standard denotational model of a language plus a formal defini-

tion (algorithm) of restoring transformation. The execution of a program consists then of two steps:

1. a pre-treatment of the source code by a restoring transformation,

2. an interpretation or compilation of concrete-syntax code.

Summing up our considerations, the construction of a denotational model of a programming language cor-

rect-program constructors proceeds in five steps:

1. In the first step, we build an algebra of detonations AlgDen that includes the denotations of the future

syntax as well as their constructors. In that step, significant decisions are taken about the functionality

of the language. A language designer must specify the repertoire of constructors of AlgDen in such a

way that the corresponding (unique) reachable subalgebra contains all the elements that we want to

access through syntax. This will be illustrated and explained in Sec. 6. In the earlier Sec. 3.5 and Sec.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 57

5 we build technical fundaments for the algebra of denotations — data- and type-oriented algebras,

objects, classes and states.

2. The signature of algebra AlgDen uniquely determines the algebra of abstract syntax AlgAbsSyn

and the corresponding homomorphism (abstract semantics) A2D. Formally this step (Sec. 7.2) leads

from the signature of AlgDen to an equational grammar of AlgAbsSyn, and can be performed algo-

rithmically.

3. Since abstract syntax is not user-friendly, we transform it (Sec. 7.3) in a homomorphic way to a con-

crete syntax AlgConSyn, which is closer to programmers’ syntax. We make sure that this homo-

morphism is adequate which guarantees the existence a denotational semantics (a homomorphism

C2D : AlgConSyn ⟼ Den.

4. In the fourth step, we introduce colloquialisms (Sec. 7.4) — which make our language even more us-

er-friendly — and describe the restoring transformation. This step is creative again. The grammar of

colloquial syntax emerges from the grammar of concrete syntax by adding to it some new grammati-

cal clauses.

5. In the last step we build tools for the construction of correct programs (Sec. 9). In our opinion this

step should be regarded as an inherent phase in designing a programming language. It should be the

responsibility of a language designer to choose such programming mechanisms which make the cor-

responding constructors of correct programs sufficiently easy to use.

In the end let us reemphasize that Lingua is not regarded as a prototype of a stand-alone applicative pro-

gramming language, but only as an example of a language with denotational semantics.

3.5 Six steps to the algebra of denotations

On the ground of our model we suggest a certain systematic way of getting to an algebra of denotations of a

future object-oriented language.

1. In the first step we decide about the categories of data that we want to have in the language and a cor-

responding set of constructors. Typically, we may start by defining some simple data, e.g., numbers

or texts, and some structured data, e.g., lists or arrays.

2. The mentioned categories of data correspond to data types. Data types correspond to sets of data, but

they are not such sets. They are independent mathematical beings that only describe such sets. This

solution allows us to assume that whenever we build a (new) data, we “simultaneously” build its type.

3. To formalize the described mechanism we introduce typed data that are pairs consisting of data and

their types. Each constructor of typed data, given a tuple of arguments ((dat-1, typ-1),…,(dat-n, typ-
n)) builds a new typed data by applying a data constructor to (dat-1,…,dat-n) and a corresponding

type constructor to (typ-1,…,typ-n).

4. Typed data constitute one of two categories of values. The second category are objects that are pairs

consisting of an objecton and its type. Objectons are typed memory structures and their types are the

names (identifiers) of corresponding classes. Classes, in turn, are structure that carry types, methods

and objectons.

5. Since denotations in our model are (with some exceptions) functions on states, in the last but one step

we define states. The latter carry classes, values assigned to variables (identifiers) via references and

some other elements of a technical character. References represent typed memory addresses carrying

(sort of) predicates called yokes. Yokes describe type-independent properties of values.

6. In the last step we define an algebra of denotations, i.e., its carriers and constructors. We will have

two major categories of denotations: applicative denotations — the denotations of expressions, and

imperative denotations — the denotations of declarations and instructions.

Although in steps 1., 2. and 3. we might talk about building algebras, we do not formalize this fact, since in

building our model we refer merely to their elements and constructors. In turn, in the case of denotations, we

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 58

define a corresponding algebra explicitly, since later on we shall derive from this algebra our algebras of syn-

taxes.

3.6 Lingua as a strongly-typed language

In a manual of SQL ([52] p. 786), we can read the following sentence26:

“If we do not provide (…) correct values to functions as their arguments, we should not expect consistent

results.”

Contrary to this philosophy, Lingua will be constructed in such a way that whenever a program provides

unexpected values to a function, this function will generate an error message and/or initiate a recovery action.

To achieve this goal, we equip Lingua with a typing discipline partly announced in Sec. 3.5. In Lingua “in-

correct values” means “values of not acceptable types”. Types will be used in the descriptions of the follow-

ing mechanisms:

1. the declarations of variables,

2. the declarations of user-defined types,

3. the evaluation of expressions,

4. the execution of assignment instructions,

5. passing arguments to operations on values,

6. passing actual parameters to all three categories of procedures — imperative, functional and object

constructors,

7. returning reference parameters at the end of imperative-procedure calls,

8. returning values of functional procedures,

9. defining the types of formal parameters of all categories of procedures.

26 Andrzej Blikle’s translations from a Polish edition [52].

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 59

4 DATA, TYPES, VALUES AND YOKES

4.1 Data

The first step of designing a programming language in our framework consists in defining data and their con-

structors, i.e., an algebra of data. It is to be emphasized in this place that in our model, we will have two cat-

egories of algebras:

• first-class algebras — algebras of denotations and the corresponding algebras of syntaxes,

• second-class algebras — algebras of data, data types, typed data and yokes.

In the first case we have to make sure that algebras of denotations have nonempty reachable subalgebras,

since that is necessary for the algebras of syntaxes (reachable by definition), to be not empty. For these alge-

bras we introduce metavariables (names) AlgDen or AlgAbsSyn and we define homomorphism between

them, e.g.:

A2D : AlgAbsSyn ⟼ AlgDen

The situation with second-class algebras is different. We do not introduce metavariables for them, and we do

not care about their reachable parts. However, we still refer to them as “algebras” to express that they repre-

sent collections of some elements and some operations on them.

Proceeding to our algebra of data we recall and reemphasise that in our book we are not building a real

programming language, but only indicate how such a language might be designed. Consequently, our opera-

tions on data do not need to constitute a complete set of operations. They only offer some typical examples of

such operations and their definitions.

To begin with, we assume to be given some simple data offered by an implementation platform. We shall

not define them explicitly assuming that they are just parameters of our model. Let’s assume, therefore, that

we are given the following (somehow defined) domains of simple data offered by an implementation plat-

form:

int : Integer = …
rea : Real = …
boo : Boolean = {tt, ff}
tex : Text = …

and that all these domains (except Boolean) are additionally somehow restricted by a limitation of the size of

their elements, e.g.,

int : Integer = [− 231, 231 − 1]

We assume further to be given a set of corresponding prime constructors, defined on simple data and again

offered by an implementation platform, such as, e.g.,

pr-divide-in : Integer x Integer → Integer prime division of integers27

pr-divide-re : Real x Real → Real prime division of reals

In the general case we may assume that these functions are partial by which we mean that their executions

may either yield no value (e.g., looping indefinitely), or return an “unwanted” value28. Let

27 We assume that the result of this operation within the range of the prime integers is the integer part of the rational
result of the “mathematical” division of integers.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 60

dat : SimData = Boolean | Integer | Real | Text

be the domain of simple data, and let

ide : Identifier = …

be a set of (somehow defined) identifiers. On this ground we define a domain of data that are either simple or

structured:

dat : Data = SimData | List | Array | Record
lis : List = Datac*
arr : Array = Integer ⟹ Data
rec : Record = Identifier ⟹ Data

A list is a finite, possibly empty, tuple of arbitrary data. Arrays and records are mappings, i.e., finite func-

tions. Arrays are one-dimensional, but since their elements can be arrays themselves, our model includes ar-

rays of arbitrary dimensions. Identifiers which are in the domain of a record will be called the record attrib-

utes.

All domains of data, except SimData, will be referred to as data sorts, e.g., integer sort, text sort, array

sort, etc. At this stage, lists and arrays are not-homogeneous, i.e., may include elements of different sorts, and

may be arbitrarily large. Later the constructors of values, i.e. typed data (Sec. 4.3) will assure that all data

generated by programs will have “appropriate” structures and sizes. The technique of defining “oversized”

domains whose implementable parts are later appropriately “truncated” is typical for denotational models

since it leads to simple domain equations. We will frequently use it in the sequel29.

To define our data constructors we assume to be given a universal domain Error of all “future” error mes-

sages and that with every domain of data we associate a corresponding domain with errors, e.g.,

int : IntegerE = Integer | Error.

Having defined data domains, we may proceed to the definitions of data constructors. We start with their

signatures and give some of their definitions a little later. Since we regard the domains and the constructors

of data as a parameters of our model, their definitions should be regarded as examples only. The names of

data constructors are prefixed with da- which stands for “data”. Later we will have type constructors, value

constructors, denotation constructors etc.

Comparison constructors

da-equal : DataE x DataE ⟼ BooleanE data comparison

da-less : DataE x DataE ⟼ BooleanE data comparison

Formally these two constructors are defied for all data. It does not mean, however, that we intend to compare

lists or arrays among them or even lists with arrays. In all such cases we may assume that our constructors

return error messages.

At this stage we do not introduce logical connectives and, or and not in the domain BooleanE. They will

come into play only at the level of expression denotations in Sec. 6.4.2, and this decision will be explained

there.

Integer number constructors

da-add-in : IntegerE x IntegerE ⟼ IntegerE
da-subtract-in : IntegerE x IntegerE ⟼ IntegerE

28 This may happen, e.g., if the implementation platform provides an addition modulo say 109, where 999999999 + 1 =
0.

29 At the level of the algebra of denotations “implementable” would mean “algebraically reachable” (cf. Sec. 2.13). As
we remember, only reachable denotations are representable in syntax. However, at the level of data — and later of
types and values — we do not need to care about reachability, since these elements won’t have syntactic counter-
parts. Indeed, if we write e.g. 17.3 in a program, it is not a syntactic representation of the corresponding number, but
of an expression whose fixed value is that number. This will be formalized in Sec. 6.4.2

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 61

da-multiply-in : IntegerE x IntegerE ⟼ IntegerE
da-divide-in : IntegerE x IntegerE ⟼ IntegerE

Real number constructors

da-add-re : RealE x RealE ⟼ RealE
da-subtract-re : RealE x RealE ⟼ RealE

da-multiply-re : RealE x RealE ⟼ RealE
da-divide-re : RealE x RealE ⟼ RealE

Text constructors

da-glue-te : TextE x TextE ⟼ TextE

List constructors

da-empty-li : ⟼ ListE
da-put-to-li : DataE x ListE ⟼ ListE
da-head-li : ListE ⟼ DataE
da-tail-li : ListE ⟼ ListE

Array constructors

da-empty-ar : ⟼ ArrayE create an empty array

da-put-to-ar : ArrayE x DataE ⟼ ArrayE add an element with a “next” index

da-change-in-ar : ArrayE x IntegerE x DataE ⟼ ArrayE replace an element of an array

da-get-from-ar : ArrayE x IntegerE ⟼ DataE

Record constructors

da-create-rc : Identifier x DataE ⟼ RecordE
da-put-to-rc : DataE x RecordE x Identifier ⟼ RecordE
da-get-from-rc : RecordE x Identifier ⟼ DataE
da-change-in-rc : RecordE x Identifier x DataE ⟼ RecordE replace an element of a rec-

ord

Notice that among our constructors, we do not have constructors of identifiers. We return to them at the level

of value-expression denotations in Sec. 6.4.2.

In order to define simple-data constructors, we assume to be given some prime constructors which we

may think of as provided by an implementation platform.

It is a well-known fact that for some arguments prime constructors return either a wrong answer or no an-

swer at all. E.g., we can’t divide a number by zero, or can’t add two numbers if their sum would be too large

for the current implementation. In all such cases our data constructors should not be performed in a “standard

way”, but instead an error message should be generated. The same concerns the constructors of structured

data. For instance, we may wish to set a limit to the volume of an array.

To systematically incorporate this mechanism, into our model, with every data constructor we associate an

auxiliary function called a trust test. E.g. with real division we associate a trust test:

trust-da-divide-re : RealE x RealE ⟼ Error | {‘OK’}

such that whenever the primary constructor pr-divide-re does not return a correct arithmetical result, the trust

test yields appropriate error message, and otherwise it generates ‘OK’. For instance we may set:

trust-da-divide-re.(rea-1, rea-2) =
 rea-i : Error ➔ rea-i for i = 1, 2
 rea-2 = 0 ➔ ‘division by zero not allowed’
 pr-divide-re.(rea-1, rea-2) > max-int ➔ ‘overflow’
 pr-divide-re.(rea-1, rea-2) < min-int ➔ ‘underflow’
 true ➔ ‘OK’

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 62

where pr-divide-re is the prime division, and max-rea and min-rea denote the maximal/minimal real ac-

ceptable in a current implementation. Of course, the predicates

pr-divide-re.(rea-1, rea-2) > max-rea
pr-divide-re.(rea-1, rea-2) < min-rea

must be “somehow” implemented.

We assume that all our trust tests will be transparent for errors (Sec. 2.9). In this book we shall not define

trust tests explicitly assuming that they constitute yet another category of parameters of our model.

Given a trust test for the division of reals, the definition of the corresponding data constructor will be the

following:

da-divide-re.(rea-1, rea-2) =
 trust-divide-re.(rea-1, rea-2) : Error ➔ trust-divide-re.(rea-1, rea-2)
 true ➔ pr-divide-re.(rea-1, rea-2)

Another example of a trust test is associated with a constructor that adds an element to a list:

trust-add-to-li : DataE x ListE ⟼ Error | {‘OK’}
trust-add-to-li.(dat, lis) =
 dat : Error ➔ dat
 lis : Error ➔ lis
 size.(push.(dat, lis)) > max ➔ ‘overflow’
 true ➔ ‘OK’

where push is a “mathematical” functions defined in Sec. 2.2, size is a function that somehow computes the

memory size necessary to “fit” the list, and max is a parameter of our model30. The definition of the corre-

sponding operation on lists will be the following:

da-add-to-li : DataE x ListE ⟼ Error | {‘OK’}

da-add-to-li.(dat, lis) =
 truth-da-cons.(dat, lis) : Error ➔ truth-da-cons.(dat, lis)
 true ➔ push.(dat, lis)

The definitions of the remaining data constructors are analogous and we assume them to be parameters of our

model.

Note that our algebra of data is not reachable, since we have not defined any zero-argument data construc-

tors. As was already mentioned, we shall only care about the reachability of algebras at the level of denota-

tions.

It is to be emphasized at the end that we use trust tests only at the level of data. We “sort them out” from

the definitions of data constructors just to emphasize that their identifications constitute an essential step in

designing a programming language. In the book's sequel, practically all defined constructors will perform

some adequacy checks of their arguments, but we shall not define these checks as separate trust tests.

4.2 The types of data

Having defined data and their constructors we may proceed to the types of data otherwise called data types.

Data types describe “internal structures” of data, and will become components of values. Formally data types

are defined as words, tuples, mappings or their combinations. The categories of data types reflect possible

structures of data:

30 In this definition, and in all definitions in the sequel, we assume that whenever an error appears in a computation,
this computation is aborted and the error is signalized, i.e., is returned as a terminal result. In our case if both dat and
lis are errors, then dat-error is signalized. An alternative to this solution could be that we search for, and signalize, all
errors. Since such a solution would significantly lengthen our definitions, and made them less readable, we gave it
up. After all Lingua is only an example.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 63

typ : DatTyp =
{‘integer’, ‘real’, ‘boolean’, ‘text’} | simple types

{‘L’} x DatTyp | list types
{‘A’} x DatTyp | array types
{‘R’} x (Identifier ⟹ DatTyp) record types

Types of simple data are one-element tuples of words. Symbols 'L', 'A' and 'R' are called type initials and

indicate the sorts of structural types. E.g. ('A', ‘integer’) is the type of arrays of integers, and ('L', ('A', ‘re-
al’)) is the type of lists whose elements are arrays of reals.

In the case of a list-type ('L ', typ) we say that typ is the inner type of the list type and similarly for array-

types. The elements of the domain

tyr : TypRec = Identifier ⟹ DatTyp

are called type records, e.g.:

employee-type =
[‘ch-name’ / ‘text’,
‘fa-name’ / ‘text’,
‘award-years’ / (‘A’, ‘integer’),
‘salary’ / ‘integer’,
‘commission’ / ‘integer’]

Type records, i.e., records of types, should not be confused with record types, that are types of records. A

record type consist of a record initial ‘R’ and a type record. Other examples of data types may be:

('L', ('R', [name/’text’, age/’integer’])) a type of lists of rec-

ords
('A', ('L', ('R', [name/’text’, age/’integer’]))) a type of arrays of lists of rec-

ords

The definition of the domains of types anticipates the principle that all elements of a list or of an array must

have a common type.

Notice that an array type does not specify the number of array elements. The introduction of arrays with a

fixed number of elements will be possible with the use of yokes (see Sec. 4.4).

To associate data with data types, we define with each type a set of data called the clan of this type. For-

mally, we define a function CLAN-ty that with each type assigns its clan:

CLAN-ty : DatTyp ⟼ Sub.Data

This function is defined by structural induction

CLAN-ty.’boolean’ = Boolean
CLAN-ty.’integer’ = Integer
CLAN-ty.’real’ = Real
CLAN-ty.’text’ = Text
CLAN-ty.(‘L’, typ) = (CLAN-ty.typ)c*
CLAN-ty.(‘A’, typ) = Integer ⟹ CLAN-ty.typ
CLAN-ty.(‘R’, [ide-1/typ-1,…, ide-n/typ-n]) =

{ [ide-1/dat-1,…, ide-n/dat-n] | dat-i : CLAN-ty.typ-i for i = 1;n }

An important fact to be signalised in this place is that the union of the clans of all types not does not exhaust

the domain Data. In other words, there exist data which have no types. An example of such a data may be a

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 64

non-homogeneous list such as, e.g., (123, ‘abc’, tt). As we will see in the sequel, non-homogeneous data will

not “happen” in our programs. In this way, by introducing types, we restrict the set of reachable data31.

It is also worth noticing that clans of different types need not be disjoint. E.g. the clans of types (‘A’, ‘in-
teger’) and (‘R, []) both include empty functions.

For technical reasons we introduce an auxiliary function of a sort of a type:

sort-t : DatTyp ⟼ {‘boolean’, ‘integer’, ‘real’, ‘text’, ‘L’, ‘A’, ‘R’}

sort-t.typ =
 typ = ‘boolean’ ➔ ‘boolean’
 typ = ‘integer’ ➔ ‘integer’
 typ = ‘real’ ➔ ‘real’
 typ = ‘text’ ➔ ‘text’
 typ : {‘L’} x DatTyp ➔ ‘L’

typ : {‘A’} x DatTyp ➔ ‘A’
typ : {‘R’} x (Identifier ⟹ DatTyp) ➔ ‘R’

To define constructors of data types we introduce a domain that includes data types and errors.

typ : DatTypE = DatTyp | Error

Now, for every data constructor da-co we define a data-type constructor ty-co that builds the type of the data

built by da-co.

Comparison constructors

ty-equal : DatTypE x DatTypE ⟼ DatTypE
ty-less : DatTypE x DatTypE ⟼ DatTypE

Arithmetic constructors for integers

ty-add-in : DatTypE x DatTypE ⟼ DatTypE
ty-subtract-in : DatTypE x DatTypE ⟼ DatTypE
ty-multiply-in : DatTypE x DatTypE ⟼ DatTypE

ty-divide-in : DatTypE x DatTypE ⟼ DatTypE

Arithmetic constructors for reals

ty-add-re : DatTypE x DatTypE ⟼ DatTypE
ty-subtract-re : DatTypE x DatTypE ⟼ DatTypE
ty-multiply-re : DatTypE x DatTypE ⟼ DatTypE

ty-divide-re : DatTypE x DatTypE ⟼ DatTypE

Text constructors

ty-glue-li : DatTypE x DatTypE ⟼ DatTypE

List constructors

ty-empty-li : DatTypE ⟼ DatTypE

ty-put-to-li : DatTypE x DatTypE ⟼ DatTypE
ty-head-li : DatTypE ⟼ DatTypE
ty-tail-li : DatTypE ⟼ DatTypE

Array constructors

ty-create-ar : DatTypE ⟼ DatTypE

31 In this place the word “reachable” does not mean “reachable algebraically” in the sense described in Sec. 2.13. It
only means that such a data may appear as a component of a value (see Sec. 4.4) generated by an expression eval-
uated in a program.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 65

ty-put-to-ar : DatTypE x DatTypE ⟼ DatTypE
ty-change-in-ar : DatTypE x DatTypE x DatTypE ⟼ DatTypE
ty-get-from-ar : DatTypE x DatTypE ⟼ DatTypE

Record constructors

ty-create-rc : Identifier x DatTypE ⟼ DatTypE

ty-put-to-rc : DatTypE x DatTypE x Identifier ⟼ DatTypE
ty-get-from-rc : DatTypE x Identifier ⟼ DatTypE
ty-change-in-rc : DatTypE x Identifier x DatTypE ⟼ DatTypE

Below show a few examples of the definitions of these constructors:

ty-equal.(typ-1, typ-2) =
 typ-i : Error ➔ typ-i for i = 1,2

typ-1 ≠ typ-2 ➔ ‘types of compared values must coincide’
 not comparable.typ-1 ➔ ‘not comparable’
 true ➔ ‘boolean’

Here we have used a metapredicate comparable to indicate the fact that data of some types may be not com-

parable. E.g. we may assume that simple data are comparable, but structured data are not. Of course other

solutions are possible as well.

ty-divide-in.(typ-1, typ-2) =
 typ-i : Error ➔ typ-i for i = 1,2
 typ-i ≠ ‘integer’ ➔ ‘integer expected’ for i = 1,2
 true ➔ ‘integer’

ty-empty-li.typ =
 typ : Error ➔ typ
 true ➔ (‘L’, typ)

ty-put-to-li.(typ-e, typ-l) = cons typ-e on list typ-l
 typ-i : Error ➔ typ-i for i = e,l
 sort-t.typ-l ≠ ‘L’ ➔ ‘list expected’
 let
 (‘L’, typ) = typ-l
 typ-e ≠ typ ➔ ‘conflict of types’
 true ➔ typ-l

ty-empty-ar.typ =
 typ : Error ➔ typ
 true ➔ (‘A’, typ)

ty-put-to-ar.(typ-e, typ-a) = put typ-e to array typ-a

 typ-i : Error ➔ typ-i for i = a,e
 sort-t.typ-a ≠ ‘A’ ➔ ‘array expected’
 let
 (‘A’, typ) = typ-a
 typ ≠ typ-e ➔ ‘conflict of types’
 true ➔ typ-a

ty-create-rc.(ide, typ) =
 typ : Error ➔ typ
 true ➔ (‘R’, [ide/typ])

ty-put-to-rc.(typ-e, typ-r, ide) = put typ-e to record typ-r on attribute ide

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 66

 typ-i : Error ➔ typ-i
 sort-t.typ-r ≠ ‘R’ ➔ ‘record expected’
 typ-r.ide = ! ➔ ‘attribute already exist’
 true ➔ (‘R’, typ-r[ide/typ-e])

ty-change-in-rc.(typ-r, ide, typ-e) = check if new type coincides with the former

 typ-i : Error ➔ typ-i for i = r, e
 sort-t.typ-r ≠ ‘R’ ➔ ‘record expected’
 let
 (‘R’, typ-rb) = typ-r -rt for „record type”
 typ-rb.ide = ? ➔ ‘no such attribute’
 let
 typ-at = typ-rb.ide -at for „attribute type”

 typ-e ≠ typ-at ➔ ‘conflict of types’
 true ➔ typ-r

The last constructor will be used in Sec. 4.3 in the definition of a constructor of typed data that replaces a

data assigned to an attribute of a record by another data. Here we anticipate the fact that if we replace a data

assigned to a record attribute, the new data must have the same type as the former one.

Type constructors will play a double role in our model:

1. they will be used in evaluating value expressions to build the type of the new value,

2. they will be used in type expressions and type declarations to build user-defined data types.

4.3 Typed data

Typed data are pairs consisting of a data and its type, and their constructors will constitute a fundament for

future value-expression denotations. As was already announced, a typed data is a data and its type:

tyd : TypDat = {(dat, typ) | dat : CLAN-ty.typ} (4.3-
1)

In this place we should explain why we decided to operate on typed data, rather than on data alone, despite

the fact that if a data has a type then this type is unique type (Sec. 4.2)? There are at least five reasons of our

decision:

1. Not all data have types.

2. We want to show explicitly how the modifications of data go “in parallel” with the modification of

their types. In this way, we also suggest a specific solution for Lingua implementation.

3. Whenever a typed data becomes an argument of an operation, or is to be assigned to a variable or to a

formal parameter of a procedure, we have to check the coincidence of the type of this data with an

expected type of an argument, a variable or a parameter respectively. In all such cases having an ex-

plicit type of a data is just handy.

4. As we will see in Sec. 4.4, typed data will constitute just one category of values, whereas the another

category will be constituted by objects consisting of an objecton and its type. In this case one objecton

may be associated with many different types.

5. In Sec. 5.4.2 we will introduce a covering relation between types such that wherever a value of typ1

is expected, we can use a value of typ2, provided that typ1 covers typ2.

A typed data that carries a simple data is called simple typed-data and analogously are understood structural

typed-data. The constructors of typed data will “call” the corresponding constructors of data and of types. To

describe this mechanism we expand the earlier introduced function sort-t (Sec. 0) onto typed data:

sort-td.(dat, typ) = sort-t.typ

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 67

Note in this place that although data were split onto several domain, we “glue” typed data into one domain.

We can do so without losing a typing discipline, since data are coupled with types, and therefore the con-

structors of typed data may signalize errors whenever they receiving arguments of inappropriate types. As we

will see in Sec. 6.4.2, this solution also leads to one carrier of value expressions denotations instead of many

carriers such as, e.g., boolean expression denotations, integer expression denotations, etc. This decision sim-

plifies our model.

Now, we proceed to the constructors of typed data. For each data constructor da-co we define a typed da-

ta constructor td-co, that “calls” (with one exception, for empty lists) the corresponding da-co and ty-co.

Note that all our constructors are total functions which is possible due to the fact that TypDatE includes ab-

stract errors.

Comparison constructors

td-equal : TypDatE x TypDatE ⟼ TypDatE
td-less : TypDatE x TypDatE ⟼ TypDatE

Arithmetic constructors for integers

td-add-in : TypDatE x TypDatE ⟼ TypDatE

td-subtract-in : TypDatE x TypDatE ⟼ TypDatE
td-multiply-in : TypDatE x TypDatE ⟼ TypDatE
td-divide-in : TypDatE x TypDatE ⟼ TypDatE

Arithmetic constructors for reals

td-add-re : TypDatE x TypDatE ⟼ TypDatE

td-subtract-re : TypDatE x TypDatE ⟼ TypDatE
td-multiply-re : TypDatE x TypDatE ⟼ TypDatE
td-divide-re : TypDatE x TypDatE ⟼ TypDatE

Text constructors

td-glue-tx : TypDatE x TypDatE ⟼ TypDatE

List constructors

td-empty-li : DatTypE ⟼ TypDatE
td-put-to-li : TypDatE x TypDatE ⟼ TypDatE
td-head-li : TypDatE ⟼ TypDatE
td-tail-li : TypDatE ⟼ TypDatE

Array constructors

td-empty-ar : DatTypE ⟼ TypDatE
td-put-to-ar : TypDatE x TypDatE ⟼ TypDatE
td-change-in-ar : TypDatE x TypDatE x TypDatE ⟼ TypDatE
td-get-from-ar : TypDatE x TypDatE ⟼ TypDatE

Record constructors

td-create-rc : Identifier x TypDatE ⟼ TypDatE
td-put-to-rc : TypDatE x TypDatE x Identifier ⟼ TypDatE
td-get-from-rc : TypDatE x Identifier ⟼ TypDatE
td-change-in-rc : TypDatE x Identifier x TypDatE ⟼ TypDatE

Let us show a few examples of the definitions of these constructors. All of them are transparent for errors

(Sec. 2.9). In all cases constructors are defined according to a common scheme:

1. check if the argument typed data are not errors, and if they are not then,

2. compute the resulting type by a type constructor, and if no error is signalized then,

3. compute the resulting data by a primary data constructor, and if no error is signalized then,

4. combine the computed type and data into a typed data.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 68

If in 1, 2 or 3 an error is signalized, then this error becomes the final result. Let us illustrate this scheme by an

example of the division of integers:

td-divide-in : TypDatE x TypDatE ⟼ TypDatE

td-divide-in.(tyd-1, tyd-2) =
 tyd-i : Error ➔ tyd-i for i = 1, 2
 let
 (dat-i, typ-i) = tyd-i for i = 1, 2
 typ = ty-divide-in.(typ-1, typ-2)
 typ : Error ➔ typ
 let
 dat = da-divide-in.(dat-1, dat-2)
 dat : Error ➔ dat
 true ➔ (dat, typ)

In this definition, we refer to (call) two previously introduced constructors — a type constructors ty-divide-
in, and a data constructor da-divide-in. First of them checks if the arguments of td-divide-in are integers,

and the other is responsible for all remaining checks.

A few other examples of the constructors of typed data are shown below. Note that two of them, like the

coming one, get types as arguments.

td-empty-li : DatTypE ⟼ TypDatE
td-empty-li.typ =

typ : Error ➔ typ
 let

typ-l = ty-empty-li.typ
true ➔ ((), typ-l)

We recall that () denotes an empty tuple, and ty-create-li.typ = (‘L’, typ). As we see, a typed list includes no

data, but has a type. When we add a new typed data to such a list, its type must be typ. This rule is expressed

in the following definition:

td-put-to-li : TypDatE x TypDatE ⟼ TypDatE
td-put-to-li.(tyd-e, tyd-l) = -e – “element”, -l – “list”
 tyd-i : Error ➔ tyd-i for i = e, l
 let
 (dat-i, typ-i) = tyd-i for i = e, l
 new-typ-l = ty-put-to-li.(typ-e, typ-l)
 new-typ-l : Error ➔ new-typ-l
 let

new-lis = da-put-to-li.(dat-e, dat-l)

 true ➔ (new-lis, typ-l)

When this operation is given a list that is homogeneous (all its elements are of the same type) and no error is

encountered, it builds a list which is homogeneous as well. Since we ensure this property for all the construc-

tors of list-typed data, it follows that all reachable list-typed data are homogeneous.

Note that if new-typ-l /: Error, then new-typ-l = typ-l, and therefore the type of the new list is typ-l. This

definition in an unfolded (direct) form looks as follows:

td-put-to-li : TypDatE x TypDatE ⟼ TypDatE
td-put-to-li.(tyd-e, tyd-l) = -e – “element”, -l – “list”
 tyd-i : Error ➔ tyd-i for i = e, l
 let
 (typ-e, dat-e) = tyd-e
 (typ-l, dat-l) = tyd-l
 sort.typ-l ≠ ‘L’ ➔ ‘list-type expected’

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 69

 let
 (‘L’ typ-le) = typ-l -le – „list element”
 typ-le ≠ typ-e ➔ ‘types incompatible’
 true ➔ ((dat-e)@dat-l, typ-l)

Analogously we restrict the class of reachable array-typed data.

td-empty-ar : DatTypE ⟼ TypDatE
td-empty-ar.typ =
 typ : Error ➔ typ
 let
 typ-a = ty-empty-ar.typ

arr = da-empty-ar.()
 true ➔ (arr, typ-a)

If at the level of data we assume that

da-empty-ar.() = [],

The operation of putting a new element at the end of an array should guarantee that the domain of every array

is of the form {1,…,n}. We set therefore

td-put-to-ar : TypDatE x TypDatE ⟼ TypDatE
td-put-to-ar.(tyd-a, tyd-e) = put tyd-e to array tyd-a
 tyd-i : Error ➔ tyd-i for i = e, a
 let
 (dat-i, typ-i) = tyd-i for i = e, a
 typ = ty-put-to-ar.(typ-a, typ-e)
 typ : Error ➔ typ

let
 new-arr = da-put-to-ar.(dat-a, dat-e)
 true ➔ (new-arr, typ)

where we assume that at the level of data we have

da-put-to-ar.(dat-a, dat-e) =
 dat-a = [] ➔ [1/dat-e]
 dat-a = [1/dat-1,…,n/dat-n] ➔ [1/dat-1,…,n/dat-n, (n+1)/dat-e]

At the end one more definition which “inherits” a decision from the level of types:

td-change-in-rc : TypDatE x Identifier x TypDatE ⟼ TypDatE

td-change-in-rc.(tyd-r, ide, tyd-e) = change in record tyd-r at attribute ide for tyd-e

 tyd-i : Error ➔ tyd-i for i = r, e
let

 (dat-i, typ-i) = tyd-i for i = r, e
typ = ty-change-in-re.(typ-r, ide, typ-e)

 typ : Error ➔ typ
let

 new-rec = da-change-in-re.(dat-r, ide, dat-e)
 true ➔ (new-rec, typ-r)

Here we assume that the corresponding data-constructor is the following:

da-change-in-rc.(dat-r, ide, dat-e) = dat-r[ide/dat-e]

The inherited decision is implicit in ty-change-in-re and concerns the fact that if we assign new data to an

attribute of a record, then the new type must be identical with the previous one. Consequently the type of the

record does not change.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 70

In this place one methodological remark may be in order. In building our constructors of typed data we

first built corresponding constructors of data, then of types and finally of typed data. Technically it might be

simpler and shorter to define typed data constructors in one step. However, we decided to do it in a stepwise

way, since it is part of the following “technological line”:

1. data,

2. types,

3. typed data

4. values,

5. value expression denotations,

6. value expression syntax.

In each of these steps we concentrate on a different stage of the design of our language, i.e., on a different

aspect of this language.

4.4 Yokes

As we will see in Sec. 6.7, whenever we declare a variable or a class attribute, we define the required type of

its future values, i.e., of a typed data or an objects (see Sec. 4.5). The same happens when we declare formal

parameters of a procedure (Sec. 6.7.4.6). This mechanism is typical for many programming languages. In

some languages, however, we may declare not only the types of future values but also about some others of

their properties. For instance, in SQL (Sec. 11), one may request that a column of a table has no repetitions or

that two tables in a database are in a subordination relation.

To introduce such mechanisms in Lingua, we define a kind of32 predicates on typed data33, that we shall

call yokes. At the level of syntax, they will be represented by yoke expressions. An example of a very simple

yoke expression that describes the fact that the current value (of a variable) is greater than 10, or alternatively

than the value of a variable x, is the following (we use an anticipated concrete syntax of our language de-

scribed in Sec. 7.3.6):

value > 10 or value > x

Such a yoke will be assigned to a variable by its declaration. Another example may be

record.salary + record.commission < 2*x.

where + is the addition of integers. The corresponding yoke is satisfied whenever its argument is a record

typed data with (at least) two attributes salary and commission, and the data assigned to these attributes are

integers and satisfy the expected inequality. To be able to build such yokes we shall assume that yokes, in

general, may return arbitrary typed data and not solely boolean typed data. Their domain is, therefore, the

following:

yok : Yoke = TypDatE ⟼ TypDatE

Yokes that evaluate to boolean typed data or error will be called boolean yokes. An example of a non-

boolean yoke expression is

record.salary + record.commission

Its denotation transforms record-typed data into integer typed data. If an argument of this yoke happens to be

not a record with attributes salary and commission that carry integers, then the yoke generates an error.

A yoke is said to be conservative, if given an error, returns the same error. All yokes reachable in our lan-

guage will be conservative. A yoke constructor is said to be diligent, if given conservative yokes returns con-

servative yokes.

32 They are only “kind of predicates” rather than just “predicates”, because their values are boolean values rather than
just tt and ff.

33 Technically, yokes could have been defined on arbitrary values, i.e., also on objects (Sec. 4.5), but we resign from

this option for the simplicity of our model.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 71

By the clan of a yoke, we mean the set of all typed data that satisfy this yoke. Formally we define a func-

tion:

CLAN-Yo : Yoke ⟼ Sub.TypDat
CLAN-Yo.yok = {tyd | yok.tyd = (tt, ‘boolean’)}

Yokes constitute an algebra with two carriers:

ide : Identifier = …
yok : Yoke = …

The carrier Yoke does not contain errors, but instead yokes may return errors as their values. We say that a

typed data tyd satisfies a yoke yok if it belongs to the clan on that yoke.

Most yoke constructors will be derived from typed-data constructors but at the same time:

• some typed-data constructors will not generate yoke constructors,

• some yoke constructors will not be derived from typed-data constructors.

Which typed-data constructors we “bring to the level” of yokes is an engineering decision. As a matter of

example we shall assume that all arithmetic constructors of typed data will have their counterparts in the al-

gebra of yokes, whereas, in the case of arrays and records we shall make available only selection operations.

Yoke constructors may be also derived from some special data constructors that we shall not make availa-

ble at the level of value expressions (Sec. 6.4.1) such as, e.g.,:

sum-in : Integerc+ ⟼ Integer the sum of integers in the se-

quence
no-repet-list : Integerc+ ⟼ Boolean no repetitions in a

list
increasing-in : Integerc+ ⟼ Boolean increasingly ordered sequence of inte-

gers

Below we list five groups of examples of yoke constructors:

1. Specific constructors not derived from constructors of typed data

yo-pass : ⟼ Yoke
yo-sum-li-in : ⟼ Yoke
yo-give-td : TypDat ⟼ Yoke td- stands for “typed data”

2. Constructors derived from simple-typed-data constructors (except boolean)

yo-add-in : Yoke x Yoke ⟼ Yoke in- stands for “integer”

yo-subtract-in : Yoke x Yoke ⟼ Yoke
yo-multiply-in : Yoke x Yoke ⟼ Yoke
yo-divide-in : Yoke x Yoke ⟼ Yoke

yo-add-re : Yoke x Yoke ⟼ Yoke re- stands for “real”

yo-subtract-re : Yoke x Yoke ⟼ Yoke
yo-multiply-re : Yoke x Yoke ⟼ Yoke
yo-divide-re : Yoke x Yoke ⟼ Yoke

yo-glue-tx : Yoke x Yoke ⟼ Yoke tx- stands for “text”

3. Constructors derived from selection constructors for structured typed data

yo-top : ⟼ Yoke
yo-get-from-ar : TypDat ⟼ Yoke ar- stands for “array”

yo-get-from-rc : Identifier ⟼ Yoke re- stands for “record

4. Constructors of yokes based on predicates

yo-equal-in : Yoke x Yoke ⟼ Yoke

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 72

yo-less-in : Yoke x Yoke ⟼ Yoke
yo-no-repet-li : ⟼ Yoke li- stands for “list”

yo-increasing-li-in : ⟼ Yoke

5. Constructors of yokes based on Kleene’s propositional operators

yo-true : ⟼ Yoke

yo-and : Yoke x Yoke ⟼ Yoke
yo-or : Yoke x Yoke ⟼ Yoke
yo-not : Yoke ⟼ Yoke

yo-all-of-li : Yoke ⟼ Yoke

yo-exists-in-li : Yoke ⟼ Yoke

yo-all-of-ar : Yoke ⟼ Yoke
yo-exists-in-ar : Yoke ⟼ Yoke

Our first constructor generates an identity yoke

yo-pass.() = pass

where

pass.tyd = tyd

We need this yoke for technical reason, that are explained a little later. The second constructor computes the

sum of a list of integers:

yo-sum-li-in : ⟼ Yoke i.e.

yo-sum-li-in : ⟼ TypDatE ⟼ TypDatE
yo-sum-li-in.().tyd =
 tyd : Error ➔ tyd
 sort-td.tyd ≠ ‘L’ ➔ ‘a list expected’
 let
 (dat, (‘L’, typ)) = tyd
 typ ≠ ‘integer’ ➔ ‘integers expected’
 let
 int = sum-in.dat
 int : Error ➔ int
 true ➔ (int, ‘integer’)

An example of a yoke constructor that builds a constant-value yoke is the following

yo-give-td : TypDat ⟼ Yoke
yo-give-td : TypDat ⟼ TypDatE ⟼ TypDatE
yo-give-td.tyd-1.tyd-2 = tyd-1

This constructor, given typed data tyd-1, returns a yoke that for an arbitrary argument tyd-2 returns the typed

data tyd-1. An example definition of a yoke constructor derived from a binary typed-data constructor is the

following

yo-add-in : Yoke x Yoke ⟼ Yoke
yo-add-in : Yoke x Yoke ⟼ TypDatE ⟼ TypDatE
yo-add-in.(yok-1, yok-2).tyd = td-add-in.(yok-1.tyd, yok-2.tyd)

The following constructors builds a yoke which returns a selected value of an array:

yo-get-from-ar : TypDat ⟼ Yoke

yo-get-from-ar : TypDat ⟼ TypDatE ⟼ TypDatE
yo-get-from-ar.ind-tyd.tyd = ind- stands for “index”

 tyd : Error ➔ tyd
 sort-t.ind-tyd ≠ ‘integer’ ➔ ‘integer expected’
 sort-t.tyd ≠ ‘A’ ➔ ‘array expected’

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 73

 let
 (dat, (‘A’, typ)) = tyd
 dat.ind-tyd = ? ➔ ‘index out of scope’
 true ➔ (dat.ind-tyd, typ)

The definitions of the remaining constructors of groups 2., 3. and 4. are analogous.

To explain why we need pass yoke, consider the following formula that defines the denotation of yoke

expression value + 2:

yo-add-in.(pass, yo-in.2).tyd = td-add-in.(pass.tyd, yo-in.2.tyd) = td-add-in.(tyd, (2, ‘integer’))

Note that the constructors yo-add-in must “get” to yokes as its arguments. An alternative to using pass in

this example might be adding unary arithmetic constructors to our algebra, one for every integer. Since this

solution would double the number of arithmetic constructors, we decided to use pass instead.

The definitions of boolean constructors of group 5. have to be defined “from scratch” since we have not

defined such constructors on the level of typed data. First constructor of this group is a zero-argument con-

structor that returns a yoke satisfied for all values (always true):

yo-true.().tyd = (tt, ‘boolean’) for any tyd : TypDat

This yoke will be denoted by TT. i.e.,

TT = yo-true.()

The remaining constructors of group 5. refer to Kleene’s propositional connectives (see Sec. 2.10) rather than

to that of McCarthy, as it will be the case for boolean value-expressions (Sec. 6.4.1). The conjunction of

yokes is defined as follows:

yo-and : Yoke x Yoke ⟼ Yoke

yo-and.(yok-1, yok-2).tyd =
tyd : Error ➔ tyd
let

 tyd-i = yok-i.tyd for i = 1, 2
sort-td.tyd-i ≠ ‘boolean’ ➔ ‘boolean expected’ for i = 1, 2
tyd-i = (ff, ‘boolean’) ➔ tyd-i for i = 1, 2
tyd-i : Error ➔ tyd-i for i = 1, 2
true ➔ (tt, ‘boolean’)

As we see, to falsify this conjunction, it is enough that at least one of its arguments carry ff. If this is not the

case, then the result is either an error or a typed-data carrying tt. Constructor yo-not is the same as in McCar-

thy’s case, and yo-or is defined in such a way that guarantees the satisfaction of De Morgan’s law, i.e.

yo-or.(yok-1, yok-2) = yo-not.(yo-and.(yo-not.yok-1, yo-not.yok-2))

The general-quantifier constructors for lists and arrays are defined in the following way (also in Kleene’s

spirit):

yo-all-of-li : Yoke ⟼ Yoke

yo-all-of-li.yok.tyd =
 tyd : Error ➔ tyd

sort-td.tyd ≠ ‘L’ ➔ ‘list expected’
let

 (lis, (‘L’, typ)) = tyd
 lis = () ➔ (tt, ‘boolean’)
 let

(dat-1,…,dat-n) = lis
 tyd-i = yok.(dat-i, typ) for i = 1;n
 (∃ 1 ≤ i ≤ n) tyd-i = (ff, ‘boolean’) ➔ (ff, ‘boolean’)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 74

 (∀ 1 ≤ i ≤ n) tyd-i = (tt, ‘boolean’) ➔ (tt, ‘boolean’)
 true ➔ ‘never-false’

This definition may be said to be consistent with Kleene’s definition of conjunction in the sense that

ff and ee = ee and ff = ff

The existential quantification is defined in an analogous way:

yo-exists-in-li : Yoke ⟼ Yoke

yo-exists-in-li.yok.tyd =
 tyd : Error ➔ tyd

sort-td.tyd ≠ ‘L’ ➔ ‘list expected’
let

 (lis, (‘L’, typ)) = tyd
 lis = () ➔ (ff, ‘boolean’)
 let

(dat-1,…,dat-n) = lis
 tyd-i = yok.(dat-i, typ) for i = 1;n
 (∃ 1 ≤ i ≤ n) tyd-i = (tt, ‘boolean’) ➔ (tt, ‘boolean’)
 (∀ 1 ≤ i ≤ n) tyd-i = (ff, ‘boolean’) ➔ (ff, ‘boolean’)
 true ➔ ‘never-true’

Also this definition may be seen as consistent with the Kleene’s alternative where

tt kl-or ee = ee kl-or tt = tt

Quantifiers for arrays are defined in an analogous way. Why we assume Kleene’s calculus for yokes, rather

than the calculus of McCarthy34, may be justified by an example of an array a = [1/0, 2/1] and a yoke (in an

anticipated syntax):

exists-in-ar.(1/(a.i) > 0)

which expresses the fact that there exists an element a.i of a such that 1/a.i > 0. In McCarthy’s calculus, the

value of this yoke would be an error since the (equivalent) alternative

1/a.1 > 0 mc-or 1/a.2 > 0

evaluates to error, whereas in the calculus of Kleene it evaluates to tt. Besides, in the calculus of Kleene al-

ternative and conjunction are commutative (except for errors), whereas in the McCarthy’s case they are not.

In the end, one methodological remark is in order. The similarity of yoke expressions to value expressions

(Sec. 6.4.1) might suggest that yokes could be simply defined as the latter. In this case, however, states would

carry expression denotations, and these denotations would take states as arguments, leading to an illegal do-

main recursion.

4.5 Values, references, objects, deposits and types

Two major concepts that we discuss in this section are values and references. As already announced in Sec.

4.3, there are two categories of values: typed data and objects. Values may be:

• returned by value expressions (Sec. 6.4.2),

• assigned to references in deposits (in states, cf. Sec. 5.3),

• passed to procedures as the values of actual value-parameters (Sec. 6.6.3.4).

34 This calculus will be used in the algebra of expression denotations in Sec. 6.4.2 since at that level Kleene’s calculus
is hardly implementable.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 75

References are pairs consisting of a token, representing some memory location, and a profile. The profile

describes the usability and the visibility of the reference (Sec. 5.4). The former determines properties of val-

ues which can be stored under this reference, the latter — the rules of accessing them.

The domains of values and references, as well as their related domains, are defined by the following equa-

tions:

val : Value = TypDat | Object val-

ues

obj : Object = Objecton x ObjTyp ob-

jects

obn : Objecton = Identifier ⟹ Reference objec-

tons

typ : ObjTyp = Identifier object

types

ref : Reference = Token x Profile refer-

ences

tok : Token = … (e.g. memory locations) to-

kens

prf : Profile = Type x Yoke x OriTag pro-

files

typ : Type = DatTyp | ObjTyp
types

yok : Yoke = TypDat ⟼ BooValE
yokes

ota : OriTag = Identifier | {$} origin

tags

dep : Deposit = Reference ⟹ Value depos-

its

An object is a pair (obn, typ) that consists of an objecton and an object type. The latter is an identifier which

is supposed to be a name of a class (Sec. 5.2). Objects may be said, therefore, to be typed objectons.

An objecton may be regarded as a memory structure whose fields, i.e., references, are bound to identifiers

that we shall call attributes.

A reference ref =(tok, prf) is a pair consisting of:

• a token tok, that represents a memory location,

• a profile prf = (typ, yok, ota), that determines the way in which ref may be used:

o type typ determines the usability of ref by indicating the type of values that may be assigned to

this reference in deposits,

o yoke yok determines the usability of ref by indicating other properties of values assignable to

this reference,

o origin tag ota determines the visibility status of ref — if it is $ then the reference is public and

otherwise it is private (details in Sec. 5.4.3); we assume that $ does not belong to Identifier,
and we call it a public-visibility tag.

Deposits describe memory contents, since they assign values to references. We will make sure that references

in the domain of each deposit that can be built carry distinct tokens.

In the sequel (Sec. 5.3) each memory state will carry an objecton and a deposit. If a reference assigned to

an identifier in an objecton does not belong to the domain of deposit, then the identifier is said to be declared

but not initialized, and its reference is said to be a dangling reference.

We introduce a special notation and terminology to be used in talking about objects. Consider an objecton

obn, a deposit dep, and an identifier ide. We write then:

ide → ref and we say that ide points to ref, if obn.ide = ref,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 76

ref → val and we say that ref points to val, if dep.ref = val,

Note that we are not talking here about a reference pointing to a location (which is a typical use of references

or pointers in programming) but about an identifier pointing to a reference which in turn denotes the memory

location at which the identifier's value is being stored. Three situations are possible:

ide → ref → val a standard situation where ide has been declared and initialized; in this case we

say that val is the value of ide,

ide → ref ide has been declared but not initialized; i.e., ref is a dangling reference,

 ref → val no identifier points to ref; in this case we say that ref is an orphan reference;

such references may appear for instance when we create a local initial store of a

procedure call (Sec. 6.6.3.4), and when we return from a local terminal store of

a procedure call to a global terminal store (Sec. 6.6.3.5).

References that belong to the range of an objecton, are said to be carried by this objecton, and by objects that

include this objecton.

The profile, the type, and the origin tag of a reference are also said to be, respectively, the profile, the type,

and the origin tag of an attribute that points to this reference.

We extend to values the function that returns the sort of a typed data:

sort-va.val =
 val : TypDat ➔ sort-td.val
 val : Object ➔ ‘object’

In a certain sense objectons may be seen as “multireferences” because each of their attributes points to a ref-

erence. Note also that these references may point to other objects that carry further references, etc. Conse-

quently, objects may represent nested structures. We see such a situation in Fig. 4.5-1, where no1, ob1,…
are attributes, nr1, or1,… are references, A is a metaname of an objecton, B and C are metanames of ob-

jects, ClassB and ClassC are names of classes (identifiers), i.e., are the types of corresponding objects.

To the category of types we add a constructor of object types, which from a set-theoretical perspective is

an identity function, but from an algebraic perspective it is not, because it “makes identifiers to be object

types”.

ty-create-ot : Identifier ⟼ ObjTyp
ty-create-ot.ide = ide

Such an algebraic constructor is called an insertion.

Fig. 4.5-1 A structure view of an objecton

Fig. 4.5-2 A graph view of an objecton

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 77

It is to be noted that structured types, i.e. array-, list- and record types always belong to the category of data

types. We do not introduce constructors to build structured types involving object types, such as, e.g., types

of lists or arrays of objects, which is a consequence of the decision not to deal with structured values such as,

e.g., lists or arrays of objects. We refrain from discussing these options just for the sake of simplicity and

brevity. As we are going to see in Sec. 6.6.5.3, new objects will be built exclusively by object constructors,

and by instructions that modify earlier constructed object.

Nevertheless, we can build objects that may be colloquially called “lists of objects”, but their “list nature”

is just a way of seeing them.

Consider an objecton in Fig. 4.5-1. Its visualization will be referred to as structure view of this objecton.

An alternative to it is a graph view — in this example a list view — shown in Fig. 4.5-2., but it is not a list of

objects. In our model we only have values that are lists, but we do not have lists of values.

If an object B is assigned to an attribute of an object A, as in our example, then we say that B is an inner

object of depth 1 of A. The inner objects of B will be also regarded as inner objects of A, but of a deeper

depths and so on. The attributes of A will be called surface attributes of A, whereas all attributes of B and C
will be called deep attributes of A.

In the sequel we shall carefully distinguish between an object attribute, that is analogous to integer attrib-

ute, and that is an attribute whose value is an object, and an attribute of an object, or object’s attribute, that is

an attribute in the objecton of an object.

As we are going to see, it may be convenient to regard a value as a pair consisting of an element that we

shall call the core of the value, and a type:

val : Value = Core x Type
cor : Core = Data | Objecton

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 78

5 CLASSES AND STATES

5.1 Classes intuitively

Classes may be regarded as collections of tools used to create and modify objects. They carry three categories

of tools:

1. types (maybe none),

2. methods (maybe none), which are either signatures of procedures, or so called pre-procedures, and

which include two subcategories:

a. imperative pre-procedures, functional pre-procedures and their corresponding signatures,

b. object constructors and their signatures,

3. one objecton (maybe empty) used as a pattern for all objects generated from this class.

Let’s forget for a moment about types and methods, and concentrate on objectons carried by classes. Consid-

er the following class declaration written in an anticipated syntax35 of Lingua.

class CartesianPoint
 let abscissa = 2,15 be real and public tel;
 let ordinate be real and private tel
ssalc

The fact that abscissa is initialized to 2,15 only means that if we generate an object directly from the class,

then abscissa will be initialized to 2,15 but later we can change its value. In turn the attribute ordinate may be

(but do not need to) left not initialized. Consequently an object of type CartesianPoint may be of the form:

‘abscissa’ → (ab-tok, (‘real’, TT), ‘$’) → (2,15, (‘real’, TT))
‘ordinate’ → (or-tok, (‘real’, TT), ‘CartesianPoint’)
(‘CartesianPoint’)

or of the form

‘abscissa’ → (ab-tok, (‘real’, TT), ‘$’) → (3,16, (‘real’, TT))
‘ordinate’ → (or-tok, (‘real’, TT), ‘CartesianPoint’) → (4,75, (‘real’, TT))
(‘CartesianPoint’)

In the first case the reference of ‘ordinate’ is dangling which expresses the fact that this attribute has been

declared but not initialized. In the second case it has been initialized to a real value. Since this attribute has

been declared as private its origin tag is ‘CartesianPoint’.

In our example both objects of class CartesianPoint are of the same shape. The situation complicates, when

we introduce recursion to the definitions of a class. Let’s consider the following class declaration written

again in an anticipated syntax. In this case it includes three declarations:

1. of an objecton’s pattern,

2. of a special-purpose functional procedure called an object constructor,

3. of an imperative procedure which calls the object constructor and modifies global memory states.

Below we see an example of a program with one class declaration, and one call of a procedure that builds a

circular object. This procedure calls an object constructor that belongs to a special category of procedures.

35 In a general case declarations of variables indicate types, yokes and privacy status of these variables. At the level of
colloquial syntax we assume that if the yoke is TT (always true) then we may skip it in the declaration.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 79

class ListNode

let no = 23 be integer and public tel;
let next be ListNode and public tel

cons ConstructObject(val number as integer, node as ListNode return ListNode)

 no := number + 1;
 next := node

snoc

proc BuildCircularList()
let i be integer tel;
let node be ListNode tel;
i := 1;
while i <= 3

 do
 node := ListNode.ConstructObject(i, node);
 i := i+1
 od;

node.next.no := 11
node.next.next := node;

corp

ssalc;
ListNode.BuildCircularList()

In this example the attribute next is of the type of the class which is just being declared. The execution of

BuildCircularList() generates the following sequence of objectons, where the first objecton results from the exe-

cution of the declaration of local attributes of this procedure:

In the next step our procedure enters the while loop, and there calls the object constructor ConstructObject and

passes to it two actual value parameters: i of value 1, and node with a dangling reference. The object con-

structor builds an object by copying (with new references) and modifying the objecton of the class. Then the

new object is assigned to node and the value of i is augmented by one.

In the following step we assign to node a modified class objecton where the formerly created object is as-

signed to next:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 80

This action is repeated thus producing the following objecton. Our program exits the loop.

In the last step our program performs two last assignments which in the deepest object modifies the value of

no, and redirects the reference of the deepest next to the surface objecton. In this way we have constructed a

circular object. The rules of building objects from classes are formalized in Sec.6.6.5.

At the end of this section let’s list assumptions about classes and objects in our model that we have adopted

to make it possibly free from technical complications:

1. We do not introduce neither packages nor compilation units.

2. Classes do not include inner classes.

3. As a consequence of 1. and 2. all classes are public.

4. Classes do not contain not-replicable attributes.

5. Types and methods are declared exclusively in classes and are public.

6. A class once declared is never changed, but can be copied and then modified to build a new class

(heritage).

7. Objects are created exclusively by object constructors that replicate class objectons.

8. Some attributes of object may be private; for such attributes, if we wish to provide an external access

to them we have to declare appropriate getters and/or setters in the corresponding class.

5.2 Classes formally

By a class we shall mean a tuple consisting of four elements: an identifier, two mappings (possibly empty) —

a type environment, and a method environment — and one objecton (possibly empty):

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 81

cla : Class = Identifier x TypEnv x MetEnv x Objecton classes

tye : TypEnv = Identifier ⟹ Type | {Θ} type environments
mee : MetEnv = Identifier ⟹ Method method environments
met : Methods = ProSig | PrePro methods

where Θ is a special element called a pseudotype. The domains ProSig of procedure signatures, and PrePro

of pre-procedures, will be defined in Sec. 6.6. Each class is, therefore, a tuple of four elements:

(ide, tye, mee, obn).

By an empty class we mean a class where all three mappings are empty:

(ide, [], [], []).

Identifiers bound to types will be called constants, since their values, once assigned to them, are never

changed. Identifiers bound to values (though references) in state objectons, but not in class objectons, will be

called variables, since their values may be modified. The first element of a class, the identifier, is called an

internal name of a class. We will see why we need these internal names in Sec. 6.7.4.2, where we describe an

action of adding a new attribute to (the objecton of) a class.

5.3 Stores and states

The domain of states is defined as follows:

sta : State = Env x Store
states

env : Env = ClaEnv x ProEnv x CovRel environ-

ment

cle : ClaEnv = Identifier ⟹ Class class environ-

ments

pre : ProEnv = Indicator ⟹ Procedure procedure environ-

ment

ind : Indicator = Identifier x Identifier indica-

tors

sto : Store = Objecton x Deposit x OriTag x SetFreTok x (Error | {‘OK’})
stores

cov : CovRel = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp)) covering rela-

tions

sft : SetFreTok = Set.Token sets of (free) to-

kens

The environment of a state carriers classes, procedures36 (Sec. 6.7.6), and covering relations37 (Sec. 5.4.2),

and the store carries the rest. Classes and types declared in them are going to be public, whereas their meth-

ods and attributes are going to be private38. Also the attributes carried by objectons of stores will be private.

The meanings of “public” and “private” are explained in Sec. 5.4.3.

If a class is assigned to an identifier in a class environment, then we say that this identifier points to this

class. In an analogous way we talk about identifiers pointing to types in the type environments of classes,

and to pre-procedures in procedure environments.

Identifiers that point to classes in states are called the external names of these classes, and the correspond-

ing classes are said to be declared in sta.

36 We recall that classes carry pre-procedures rather than procedures. The difference between these two concepts is
explained in Sec. 6.6.

37 The decision of putting covering relations in environments is technically not especially relevant. We just decided to
“keep them in the same place”, where we keep classes and their types.

38 This decision has an editorial character and serves the technical simplification of our model.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 82

Attributes that appear in objectons of classes are called class’s attributes. A surface attribute of the objec-

ton of a store is traditionally called a variable in this store and state respectively.

An object of the form (obn, MyClass), where obn has been created by an object constructor (see Sec.

6.6.5.2) from the objecton of cle.MyClass, is said to be an object of class MyClass.

The covering relations cov between types will be used to describe a usability regime defined in Sec. 5.4.2.

The origin tag that appears in a store is called the origin tag of the store, and of the hosting state as well.

Its role will be explained in Sec. 5.4.3, where we shall talk about a visibility regime.

The sets of free tokens will be used to provide ”fresh” (not used) tokens, for the declarations of value vari-

ables and the constructors of new objects. For that sake we assume the existence in our model of a function:

get-tok : SetFreTok ⟼ Token x SetFreTok
get-tok.sft = (tok, sft − {tok})) such that tok : sft

An objecton my-obn is said to be well-formed in a state sta = ((cle, pre, cov), (obn, dep, ota, sft, err)), if:

1. for any attribute ide, if obn.ide = !, and dep.(obn.ide) = !, then:

obn.ide VRA.cov dep.(obn.ide) — value by reference acceptability (see Sec. 5.4.2),

2. all inner objectons of obn are well-formed in sta.

A class (ide, tye, mee, obn) is said to be well-formed in a state, if

1. obn is well-formed in this state,

2. for every reference (tok, (typ, yok, ota)) in obn, its origin tag ota is either $ or ide39.

A state sta = ((cle, pre, cov), (obn, dep, ota, sft, err)) said to be well-formed, if:

1. obn is well formed in sta,

2. external names of all classes declared in cle coincide with their internal names,

3. all surface and inner objects in obn are of types that are the names of classes declared in cle,

4. all classes declared in cle are well-formed,

5. sft includes only such tokens that do not appear in references bound in dep,

6. every identifier appearing in a state, appears in it only once; e.g., if an identifier is a variable, it can’t

by at the same time a type constant or a class name.

As we see, the well-formedness of states is mainly about typing. In the sequel, we shall ensure that the states

appearing in the executions of our programs are well-formed. By:

WfState

we denote the sets of all well-formed states. For technical convenience we define the following auxiliary

functions:

error : Store ⟼ Error error : State ⟼ Error
error.(obn, dep, ota, sft, err) = err error.(env, sto) = error.sto

Formally we may assume that the function error is defined on the union Store | State. In the same spirit we

define next two functions:

is-error : Store ⟼ Boolean is-error : State ⟼ Boolean
is-error.sto = is-error.(env, sto) = is-error.sto
 error.sto ≠ ‘OK’ ➔ tt
 true ➔ ff

Again, not quite formally, we define a function on the domain (State x SetFreTok) | (State x Error):

◄ : State x Error ⟼ State

39 This definition is the main cause why we have introduced internal names of classes as the elements of classes (see
also Sec. 6.7.4.2). An alternative solution might be to talk about the well-formedness of classes only in the context of
states, that, in our opinion, would be less elegant.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 83

(env, (obn, dep, ota, sft, err)) ◄ new-err = (env, (obn, dep, sft, ota, new-err))

◄ : State x SetFreTok ⟼ State
(env, (obn, dep, ota, sft, err)) ◄ new-sft = (env, (obn, dep, new-sft, ota, err))

We also assume that this function will be applicable to stores in an obvious way. We shall use a function:

declared : Identifier x State ⟼ {tt, ff}

to protect us against double declaration of some identifiers. In an obvious way we extend this function to

stores.

By an empty state we shall mean every state of the form (([], [], Ld-cov), ([], [], ‘public’, { }, ‘OK’))
where Ld-cov is a covering relation defined by language designer (see Sec. 5.4.2). As is easy to check, empty

state is well formed.

5.4 Two regimes of handling items

5.4.1 An overview

By an item, we shall mean a value, a reference, a type, a method (Sec. 6.6), or a class. All items are storable,

and we access them through indicators that are tuples of identifiers. To indicate a class, we need one identifi-

er, to indicate a type or a procedure, we need two identifiers — one for a class plus one for the

type/procedure itself — to indicate a value or a reference of a variable, we need one identifier, but in the case

of object attributes, we may need more identifiers, if such an attribute is located at a deep level of an object.

The principles of accessing and using items will be described by two systems of rules that we shall call

handling regimes:

• A usability regime is described by means of the types of values and the profiles of references, and

serves the purpose of deciding which values can be “sent” to a chosen operator as its arguments, or can

be assigned to a chosen reference in a deposit. E.g. we can’t “send” real numbers to an integer divi-

sion, or assign a negative integer to a variable whose type is ‘integer’, but whose yoke requests that

the assigned value is positive. Technically usability regime is built into the denotations of expressions,

assignment instruction, variable- and attribute declarations, procedure declarations, and procedure

calls.

• A visibility regime is described by means of the origin tags of references and of states, and serves the

purpose of deciding which item indicators are accessible at a given stage of program execution; e.g.,

we shall assume that private attributes of a class will be visible exclusively in the bodies of procedures

declared in this class. Technically, a reference, to be visible in a state must have the origin tag identical

with the tag of the state (cf. assignment instructions in Sec. 6.4).

Note that pre-procedures are not regarded as items. They will not be accessible from syntactic level, and will

constitute sort of “raw components” used in building procedures. This technique, which is explored in Sec.

6.7.6, has been adopted to describe the execution of mutually recursive procedures declared in different clas-

ses. Procedure declarations included in the declarations of classes will first assign pre-procedures to proce-

dure names in method environments of classes, and later a special mechanism of procedure opening (Sec.

6.7.6) will assign procedures to their indicators in procedure environments of states. Although formally pro-

cedure declarations in classes build pre-procedures, we shall talk, for simplicity, about procedures declared in

classes.

Note a significant differences between two described regimes — usability is a property of values, whereas

visibility is a property of the indicators of items. We may colloquially say that a locally declared procedure is

visible only in a local state, but precisely speaking, what may be seen or not is the indicator of a procedure

rather than a procedure itself.

In two following sections we give a birds-eye view to the ideas of our handling regimes, to be later incor-

porated in our model.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 84

5.4.2 Usability regime

Basic rules of usability regime are the following

1. Every value includes a type, and every reference includes a profile consisting of a type, a yoke and an

origin tag.

2. If a value is going to be assigned to an attribute (via its reference), by a declaration (Sec. 6.7.2), or by

an assignment instruction (Sec.6.4), or by a parameter passing mechanism of a procedure

(Sec.6.6.3.4), then the type of the attribute must accept the type of the value, and the value must satis-

fy the yoke of the reference. The concept of type acceptance is explained below.

3. If a function (operation) is applied to its arguments, then the types of arguments “expected” by the

function must accept the types of the current arguments.

To formalize the concept of type acceptance we return to the notion of a covering relations with the follow-

ing domain (Sec. 5.3):

cov : CovRel = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp))

The fact that (typ-1, typ-2) : cov will be also written as typ-1 cov typ-2, and will be said that typ-1 covers,
or accepts typ-2. As we see, a data type may cover only another data type, but not an object type, and vice

versa. The typesetting of cov in bold is just a “meta-syntactic sugar” to make some meta-formulas easier to

read.

We assume that each covering relation cov will be partly defined by a language designer, and partly by a

programmer. Consequently it will be a union of two (disjoint) relations:

cov = Ld-cov | Pr-cov

where

1. Ld-cov is a component defined by a language designer, i.e. available in all programs of a given lan-

guage,

2. Pr-cov is a component defined by a programmer, i.e. available exclusively in the program where it

has been established.

For instance, a language designer may decide that a data type ‘integer’ covers data type (‘small-integer’),
and a programmer — that an object type ‘employee-type’ covers object type ‘accountant’.

Now, for every covering relation cov we define two induced acceptability relations:

TTA.cov ⊆ Type x Type type-by-type acceptability relation

VRA.cov ⊆ Reference x Value value-by-reference acceptability relation

The first of them is a completion of cov to a reflexive and transitive relation, which means that TTA.cov is

the least relation on types such that

(1) cov ⊆ TTA.cov,
(2) (typ, typ) ⊆ TTA.cov for every typ : Type,
(3) if (typ1, typ2), (typ2, typ3) : TTA.cov then (typ1, typ3) : TTA.cov.

The second induced relation concerns not only a relationship between types but also the satisfaction of the

yoke by the value

(tok, (typ-r, yok, ota)) VRA.cov (dat, typ-v)
iff

(1) typ-r TTA.cov typ-v and
(2) yok.(dat, typ-v) = (tt, ‘boolean’)

In Sec. 5.3 we have assumed that the relationship ref VRA.cov val must be satisfied in all well-formed

states.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 85

In defining the denotational level of Lingua we shall give our programmers a tool for the creation of cov-

ering relations by enriching current relations by new pairs. For this sake we assume the existence in our mod-

el of a function of enrichment with the following signature:

enrich-cov : CovRel x Type x Type ⟼ CovRel | Error

and the following definitional scheme:

enrich-cov.(cov, typ-1, typ-2) =
typ-1 : ObjTyp and typ-2 /: ObjTyp ➔ 'typ-2 must be an object type'
typ-2 : ObjTyp and typ-1 /: ObjTyp ➔ 'typ-1 must be an object type'
typ-1 = typ-2 ➔ ‘equal types can’t be used’

 typ-1 cov typ-2 ➔ ‘redundant definition’40
 other cases ➔ other error signals
 true ➔ cov | {(typ-1, typ-2)}

We leave the “other cases” not specified to avoid going into too many technical details. An example of a

pair of types that should be rejected by enrich-cov may be (typ ,(‘A’, typ)).

Note that our constructor does not check if object types added to cov are carrying the names of declared

classes. Such a check must refer to a state, and therefore will be introduced at the level of denotations in Sec.

6.7.5.

5.4.3 Visibility regimes

Zadaję sobie pytanie, czy ten rozdział nie powinien być przeniesiony na koniec Sec.6 jako podsumowanie

mechanizmów widoczności, gdy czytelnik będzie już wiedział jak działają wywołania procedur? Z drugiej

strony jakaś zapowiedź reżymów widoczności jest w tym miejscu chyba potrzebna. ???

From a programmer’s perspective, visibility rules explain in which programming contexts a given item indi-

cator may be used (is visible). E.g. we will set a rule that private attributes of a class may be referred to ex-

clusively in the bodies of procedures declared in this class. At the same time, items locally declared in the

body of a procedure will be visible exclusively in this body.

In our model of object-oriented languages we will have two orthogonal “dimensions” of visibility statuses:

• procedure-dependent visibility: all items locally declared in procedure bodies will be visible ex-

clusively in these bodies,

• class-dependent visibility: selected items in classes may be declared as private.

Let’s start from the former, and let’s anticipate an assumption later formalized in Sec. 6.3, that every program

in our model consists of a (possibly composed) declaration followed by a (possibly composed) instruction.

This assumption does not limit the expressiveness of programs, but considerably simplifies our model. Under

this assumption all global instructions of a program, i.e. all instructions except local instructions of proce-

dure calls, operate on a common global environment, and a common global-state objecton. It is so, since in-

structions may only change values assigned to references in deposits.

Assume now that we call an imperative procedure in some current state which we call initial global state

ig-sta = (g-env, ig-sto), and which consists of a global environment and an initial global store. In our model

the execution of a call consists of three steps:

• First, we create an initial local state il-sta = (g-env, il-sto), that consists of a global environment, and

an initial local store. The latter binds (in the objecton) only formal parameters. At the same time it in-

herits the whole deposit from the global store. Formal reference-parameters point directly to the refer-

40 Mathematically we could have assumed that in this case the enrichment operation returns an unchanged cov rela-

tion. However, if a programmer tries to add a pair of types that is already in cov, then they probably do it by mistake,

and therefore such fact should be signalized by the system.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 86

ences of actual-reference parameters, and the references of the remaining global variables become or-

phans (Fig. 6.6-2 in Sec. 6.6.3.4)

• Next, we execute the body of the procedure thus transforming the initial local state into a terminal lo-

cal state tl-sta = (tl-env, tl-sto). Since the bodies of procedures may be arbitrary programs, in the

course of their executions local classes, procedures and variables may be declared.

• At the end of the call, we exit from the call, and create a terminal global state tg-sta = (g-env, tg-
sto), where we regain the global environment, and global deposit (Sec. 6.6.3.6). At this stage all local-

ly declared classes, procedures, and variables cease to exist, and therefore are no more visible.

Note now, that in the above anticipation of the mechanism of imperative procedures we have made three im-

portant decisions concerning global visibility:

• all global classes are visible in all local states of procedure calls, since they are declared in the global

environment,

• the references of all actual reference parameters are visible in local stores,

• all locally declared classes and variables cease to exist after the termination of the call.

All these decisions have an engineering character, since from a mathematical perspective, we could have

decided differently, e.g. that locally declared items remain visible after exiting a procedure call, or that only

some of the globally declared items are visible locally.

As we are going to see in Sec. 6.7.4.6, our mechanism of public visibility is even more complicated, since

in procedure declarations we accept an anticipated visibility of procedures that haven’t been declared yet. At

the same time, however, in the case of types we require an ex post visibility, which means that a type must be

declared to be visible.

Let us proceed now to visibility statuses. We assume — again for the simplicity of our model — that pri-

vate may be only the attributes of classes and objects, if they are declared to be so, whereas all other items

are always public.

Variables, classes, types and procedures are always public.

The visibility status of attributes is established in a class declaration, and later is inherited by all objects of

this class.

Technically the visibility status of an attribute is in fact the visibility status of its reference, and the latter

depends on the origin tag of the reference according to the following general rules:

General visibility rules

1. A reference is visible in a state, if the origin tag of this reference

1.1. either is $, or

1.2. coincides with the origin tag of the state.

2. A reference must be visible whenever we intend to:

2.1. get a value assigned to it in evaluating an expression,

2.2. change the value assigned to it in executing an assignment instruction.

3. The origin tags of references and states are established when these references and states are created,

and later they can’t be changed.

We will say that a variable is declared in a state, if it is bound in the objecton of this state.

If a variable has been declared in a state, then we shall say that this state is a hosting state of this variable

and ot its value. If we declare an attribute in a class, then we say that this class is a hosting class of this at-

tribute and of its value.

If an origin tag of an attribute is a name of a class, then this attribute is said to be private for this class.

Such an attribute will be visible only in states whose origin tag is the name of the class. As we are going to

see, the only such states will be the local state of the calls of procedures declared in this class.

Operational visibility rules

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 87

Let MyClass be a class named ‘MyClass’, and let myProc be an arbitrary procedure declared in this class,

and named ‘myProc’.

4. When we declare an attribute in a class called ‘MyClass’, then:

4.1. if this attribute is to be private, then its origin tag is set to ‘MyClass’,
4.2. if this attribute is to be public, then its origin tag is set to $.

5. When we declare a variable in a state, then it is always public, and therefore the origin tag of its refer-

ence is $. Note that a variable which is local to a procedure call is “locally public” for this call.

6. Local states of a call of myProc have origin tags ‘MyClass’, which means that private attributes of

type ‘MyClass’ are visible in these states. Of course, public attributes are visible by principle.

7. When we pass an actual value parameter to a procedure call, then the reference of the corresponding

formal parameter gets the yoke and the origin tag of the reference of the actual parameter (visibility

inherited),

8. When we pass an actual reference parameter to a procedure call, then its reference becomes the refer-

ence of the corresponding formal parameter (visibility is inherited).

Note that rule 6. allows for the construction of dedicated procedures, traditionally called getters and setters,

to be used when we wish to reach private attributes of objects. This rule is “implemented” in the constructors

of the denotations of value expressions (Sec. 6.4.2), and reference expressions (Sec. 6.4.4).

To go deeper into the details of these rules let’s analyze an example illustrated in Fig. 5.4-1. Consider a

program that we shall call the main program, and assume that the execution of this program starts in a state

whose origin tag is $. Since, as we are going to see in Sec. 6.5, instructions may only change values assigned

to attributes (but not their references), starting from the instruction of the main program, all states will have a

common fixed environment, let’s call it global environment, and a common fixed objecton, let call it global

objecton. Together they will be components of all consecutive global states and their global stores. In our

example the global state is the following:

• In the global environment it binds three items:

o A class MyClass named ‘MyClass’ with:

▪ a private class attribute ‘att1’ with origin tag ‘MyClass’,
▪ a public class attribute ‘att2’ with origin tag $,

▪ a pre-procedure myProc named ‘myProc’,
▪ an object pre-constructor named ‘myCons’,

o A procedure myProc named ‘myProc’; its indicator is a pair of identifiers (‘MyClass’, ‘my-
Proc’), but for the lack of space on the picture we show only one of them,

o An object constructor named ’myCons’; object constructors belong to the category of proce-

dures (a comment as above),

• In the objecton it binds

o two (public) object variables ‘myObj1’, and ‘myObj2’ pointing to objects of type ‘MyClass’.
As a rule, the objectons of these objects have been generated by an object constructor; note that

each of them has one public attribute and one private one,

o a public variable ‘var’.

Now, assume that one of the instructions of our main program is a call of the procedure myProc with one

value parameter, and reference parameter. This call creates a local state, and applies to it a program, that is

the body of the procedure. The initial local state of this program includes (Sec. 6.6.3.2):

• a global environment inherited from the global state (we do not show it in the figure),

• a new local store with the origin tag that is the name of the class, where myProc was declared — in

our case it is ‘MyClass’; the latter fact makes visible in this state all private attributes with origin tag

‘MyClass’.

According to the rules of passing actual parameters to formal parameters, described in Sec. 6.6.3.4, the objec-

ton of the local store, let’s call it local objecton, binds two formal parameters. We assume additionally that

the program of the body includes a declaration of a local variable ‘loc-var’. Altogether the local objecton

binds, therefore, three public variables:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 88

• a local variable ‘loc-var’ with origin tag $, declared in the procedure body according to the rule 5.,

• a formal value-parameter ‘for-val-par’ pointing to a reference with a fresh token and the profile of ac-

tual value-parameter ‘myObj1’, that points to a twin of the value of ‘myObj1’,

• a formal reference-parameter ‘for-ref-par’ pointing to the reference of actual reference-parameter

‘myObj2’,

Now, let’s analyze the visibility perspectives of our main program that operates on the global state, and of the

program that constitutes the body of our procedure, and operates on the local state:

The visibility perspective of the main program:

• The globally declared class and both procedures.

• Two globally declared (public) object-variables ‘myObj1’ and ‘myObj2’. We can assign their values

to another (public) variable, we can assign a new value to this variable, and we can pass this variable

as an actual parameter to a procedure call. However, we can’t reach the private attribute ‘att1’ of either

of these objects, unless by a dedicated procedure (getter or setter) declared in MyClass. In our case

this is myProc.

• One globally declared (public) variable ‘var’.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 89

Fig. 5.4-1 An illustration of the visibility concept

The visibility perspective of the body program:

• All globally and locally declared classes and procedures.

• One local variable ‘loc-var’ declared in the body program.

• One local object-variable ‘for-val-par’ that points to a twin of the value of actual parameter ‘myObj1’.

• One local object-variable ‘for-ref-par’ that points directly to the reference of ‘myObj2’ in the (inherit-

ed by the local store) global deposit.

Let’s note at the end that when we call locProc, then the local state of myProc becomes for locProc a global

state with all the consequences of this fact, but with one exception — its origin tag is ‘myClass’ rather than

$. At the same time, however, all variables bound at this level, either locally declared, or passed as parame-

ters, are public, and their visibility status is inherited by the local states of all levels of the locality.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 90

6 DENOTATIONS

6.1 The carriers of the algebra of denotations

The denotations of our language will constitute an algebra of denotations AlgDen that will become a com-

ponent of the diagram of algebras described in Sec. 3.4. The carriers of this algebra are the following:

Primitive carriers

ide : Identifier = … identifiers

prs : PriSta = {‘private’, ‘public’} privacy statuses indicators

loi : ListOfIde = Identifierc* lists of identifiers
cli : ClaInd = {‘empty-class’} | Identifier class indicators

Applicative carriers41

yok : YokExpDen = WfState → YokeE yoke-expression denotations
ted : TypExpDen = WfState ⟼ TypeE type-expression denotations

ved : ValExpDen = WfState → ValueE value-expression denotations

red : RefExpDen = WfState ⟼ ReferenceE reference-expression denotations

Imperative carriers

dcd : DecDen = WfState → WfState declaration denotations

pod : ProOpeDen = WfState ⟼ WfState procedure opening denotation

ctc : ClaTraDen = Identifier ⟼ WfState → WfState class-transformation denotations

ind : InsDen = WfState → WfState instruction denotations
ppd : ProPreDen = WfState → WfState program-preamble denotations
prd : ProDen = WfState → WfState program denotations

Declaration-oriented carriers

dse : DecSec = ListOfIde x TypExpDen declaration sections

fpd : ForParDen = DecSecc* formal-parameter-denotations
apd : ActParDen = ListOfIde actual-parameter-denotations

Signature carriers

ips : ImpProSigDen = ForParDen x ForParDen imperative-procedure signature denotations
fps : FunProSigDen = ForParDen x TypExpDen functional-procedure signature denotations

ocs : ObjConSigDen = ForParDen x Identifier object-constructor signature denotations

The denotations of value expressions, declarations, instructions and programs are partial functions since all of

them may generate infinite executions.

Type expressions are used in the declarations of types, variables, class attributes and methods. The role of

the domain of program preamble denotations will be explained in Sec. 6.3

41 In early programming languages used at the turn of the 1940s and 1950s, programs were sequences of simple in-
structions called “commands”; therefore, they could be said to be written in an “imperative mood”. Complex expres-
sions came into play later in higher-order languages such as Algol and Fortran. Expressions were regarded as tools
to be “applied” to get values. Over time, languages (practically) without instructions, i.e., where programs were ex-
pressions, started to emerge and were called “applicative languages”. One of the first was Lisp — a language for
manipulating lists.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 91

Note that the domains of items — i.e., of values, references, types, yokes, procedure and classes — are not

the carriers of our algebra, which means that they will not have their counterparts in the algebras of syntax.

Values, references, types and classes will be (indirectly) represented by expressions, and procedures — by

declarations and calls.

An applicative denotation is said to be conservative, if given a state that carries an error, returns this error

as a result. A constructor of applicative denotations is said to be diligent, if given conservative denotations as

arguments return a conservative denotation as a result. As we are going to see, all applicative denotations

reachable in our language will be conservative.

An imperative denotation is said to be conservative, if given a state that carries an error, returns the same

state as a result. A constructor of imperative denotations is said to be diligent, if given conservative denota-

tions as arguments returns a conservative denotation as a result. Typical imperative denotations in Lingua

will be conservative which implementationally means that once an error message is raised during the execu-

tion of a program, the execution aborts and the error message is signalized. However, our model of errors

allows for an introduction of error-handling mechanisms, where occurrences of errors trigger recovery ac-

tions. An example of a corresponding not-diligent constructor of instruction denotations is discussed in Sec.

6.5.3.

In the subsections that follow we shall define the constructors of our algebra of denotations.

6.2 Identifiers, class indicators and privacy statuses

Identifiers, class indicators and privacy statuses have a singular character in our model since they are com-

mon for the algebras of denotations and syntax. We decided (a mathematical decision) that talking about the

“denotations of identifiers” on one hand, and of “syntax of identifiers” on the other, and similarly for two

remaining categories, would be a too-far going fundamentalism. We assume, therefore, that their denotational

carriers and their abstract-, concrete- and colloquial syntactic carriers are the same, and are just sets of strings

of characters.

Identifiers are algebraically built by zero-argument constructors, one for every identifier. Each of them

makes an identifier “out of nothing”:

build-id-ide.() = ide for every ide : Identifier

Here () denotes an empty tuple of arguments.

We recall in this place (cf. Sec. 2.13) that the future algebra of syntax of our language will be constructed

as a homomorphic co-image of the (unique) reachable subalgebra of AlgDen. Consequently, only reachable

denotations will have their counterparts at the level of syntax. Class indicators will be generated by two con-

structors:

create-class-ind-of-empty : ⟼ ClaInd
create-class-ind-of-empty.() = ‘empty-class’

create-class-ind-of-parent : Identifier ⟼ ClaInd
create-class-ind-of-parent.ide = ide

Their role will be explained in Sec. 6.7.3. Privacy statuses are also built by two constructors:

build-ps-private : ⟼ PriSta
build-ps-private.() = ‘private’

build-ps-public : ⟼ PriSta
build-ps-public.() = ‘public’

The role of these elements was explained in Sec. 5.4.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 92

6.3 Programs and their segments

Before we proceed to the denotations of expressions, instructions and declaration we shall take a “strategic”

decision about the future syntax of our programs. We presume that they will consist of three segments se-

quentially composed in this order:

1. a preamble consisting of (sequentially interleaving) instructions and declarations,

2. one universal procedure-opening command open procedures,
3. an instruction.

Of course, all mentioned above instructions may be structured, i.e. including other instructions. Besides, the

first and the third segment may be trivial skip-segments.

As we will see, the procedure-opening command open procedures is a special tool for the elaboration of

recursive procedures whose declarations may belong to different classes (details in Sec. Sec. 6.6.1 and 6.7.6).

The assumed restriction of the structure of programs has partly engineering and partly mathematical justi-

fication.

At the engineering side it should help programmers to better understand and control the “behaviors” of

their programs. Declarations build tools to be used in programs, and therefore it seems reasonable to start

from them in developing a program. In turn, instructions included in preambles are necessary for building

values, and in particular objects, to initialize declared variables and attributes .

At the mathematical level our assumption will simplify the mechanism of passing returning the references

of formal reference-parameters of procedure calls (Sec. 6.6.3.5) and consequently also the rule of building

correct procedure calls (Sec. 9.4.6.3). It also standardizes the process of correct program development (Sec.

9.4.1).

So far, our assumption about programs’ structure was described at the level of syntax42. To bring it to de-

notations we introduce the following constructor:

make-prog-den : ProPreDen x {open-pro-den} x InsDen ⟼ ProDen
make-prog-den.(ppd, pod, ind) = ppd ● open-pro-den ● ind

where

open-pro-den : WfState → WfState

is a denotation of command open procedures defined in Sec. 6.7.6. We also define three constructors of the

declarations of program preambles:

make-ppd-of-dcd : DecDen ⟼ ProPreDen an insertion

make-ppd-of-dcd.dcd = dcd

make-ppd-of-ind : InsDen ⟼ ProPreDen an insertion
make-ppd-of-ind.ind = ins

compose-ppd : ProPreDen x ProPreDen ⟼ ProPreDen
compose-ppd.(ppd-1, ppd-2) = ppd-1 ● ppd-2

Set-theoretically first two constructors are identity functions, but algebraically they “make” program pream-

bles out of declarations and instructions. In the subsequent sections the constructors of DecDen and InsDen

will be defined in such a way, that open-pro-den will not belong to their reachable parts.

42 A temporary resignation from our denotation-to-syntax philosophy serves only an intuitive explanation of the struc-
ture of future programs.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 93

6.4 Expressions

6.4.1 Value expressions

The denotations of value expressions are partial functions, that given a state return a value or an error:

ved : ValExpDen = WfState → ValueE value-expression denotations

We split value expressions into six categories. Contrary to the former case, all these categories belong to the

common carrier of value expressions:

1. fixed-value expressions that return a typed data independently of the current state,

2. selection expressions that return a value pointed by a variable or an attribute of an object,

3. functional-procedure calls that return values built by procedures,

4. composed expressions associated with typed-data constructors.

5. boolean expressions,

6. conditional expressions.

The signatures of constructors of the denotations of value expressions are listed below.

Constructors of fixed-value-expression denotations

ved-bo.boo : ⟼ ValExpDen for boo : {tt, ff}
ved-in.int : ⟼ ValExpDen for int : Integer
ved-re.rea : ⟼ ValExpDen for rea : Real

ved-tx.tex : ⟼ ValExpDen for tex : Text

Constructors of selection-expression denotations

ved-variable : Identifier ⟼ ValExpDen
ved-attribute : Identifier x Identifier ⟼ ValExpDen

Constructor of functional procedure calls

ved-call-fun-pro : Identifier x Identifier x ActParDen ⟼ ValExpDen

Constructors based on typed-data constructors (examples)

ved-divide-re : ValExpDen x ValExpDen ⟼ ValExpDen

ved-create-li : ValExpDen ⟼ ValExpDen
ved-get-from-rc : ValExpDen x Identifier ⟼ ValExpDen
ved-get-from-ar : ValExpDen x ValExpDen ⟼ ValExpDen
…

Constructors of boolean-expression denotations

equal : ValExpDen x ValExpDen ⟼ ValExpDen
less : ValExpDen x ValExpDen ⟼ ValExpDen
ved-and : ValExpDen x ValExpDen ⟼ ValExpDen
ved-or : ValExpDen x ValExpDen ⟼ ValExpDen
ved-not : ValExpDen ⟼ ValExpDen

Conditional-expression constructor

ved-if : ValExpDen x ValExpDen x ValExpDen ⟼ ValExpDen

As we are going to see, fixed-value expressions always evaluate to typed data. The same will be true for

composed expressions based on typed-data constructors. Consequently the only expressions that evaluate to

objects will be selectors and functional-procedure calls. In the latter case procedure calls will return objects

previously saved in stores and (possibly) modified by assigning new values to their attributes. Unlike in the

case of typed-data expressions that return records, and may add or remove record attributes, object-oriented

functional procedures may only modify the values assigned to attributes. This is an engineering decision.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 94

The modifications of earlier created and declared objects are performed exclusively by instructions, and

can only change values assigned to attributes. The only context where we can add a new attribute to an objec-

ton are class declarations where we build class objectons (Sec. 6.7.4.2). These objectons are later used as

patterns to build objects when we create object variables in stores by object constructors (Sec . 6.7).

All zero-argument constructors are defined accordingly to a common scheme which we show on the ex-

ample of value expressions for integers. In this case we use a meta-constructor ved-integer which given an

integer, e.g. 3 returns a zero-argument constructor in our algebra:

ved-int.3 : ⟼ ValExpDen i.e.
ved-int.3 : ⟼ WfState → Value | Error
ved-int.3.().sta =
 is-error.sta ➔ error.sta
 true ➔ (3, ‘integer’)

In this way, for every integer acceptable in our model we assume to have a dedicated constructor. Conse-

quently, on the side of concrete syntax we can write constant-value expressions like 3, 245, or 340987502. If

we had introduced only one zero-argument constructors corresponding to, say integer 1, then instead of writ-

ing 3 we had to write, e.g., ((1+1)+1).

The constructor that follows builds the denotations of expressions that return values assigned to state at-

tributes, i.e. to variables:

ved-variable : Identifier ⟼ ValExpDen i.e.
ved-variable : Identifier ⟼ WfState ⟶ ValueE
ved-variable.ide.sta
 is-error.sta ➔ error.sta
 let
 (env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 obn.ide = ? ➔ ‘variable not declared’
 dep.(obn.ide) = ? ➔ ‘variable not initialized’
 true ➔ dep.(obn.ide)

The evaluation of a variable expression returns an error, if the variable hasn’t been initialized43.

Next constructor corresponds to an expression that returns a value assigned to an attribute of a computed

object:

ved-attribute : ValExpDen x Identifier ⟼ ValExpDen i.e.
ved-attribute : ValExpDen x Identifier ⟼ WfState ⟶ ValueE
ved-attribute.(ved, ide).sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?

ved.sta : Error ➔ ved.sta
ved.sta /: Object ➔ ‘object expected’

 let
(obn, cl-ide) = ved.sta

 obn.ide = ? ➔ ‘attribute unknown’
 let
 (tok, (typ, yok, ota)) = obn.ide the reference of ide in obn
 (env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 dep.(obn.ide) = ? ➔ ‘attribute not initialized’

ota ≠ $ and ota ≠ st-ota ➔ ‘attribute not visible’

43 In their colloquial English programmers frequently say “a variable abc” when they mean (should say), “a variable

expression abc”. The difference between these concepts is clear at the level of abstract syntax where build-id.abc() is

a variable and ved-expression(abc) is an expression. Then, at the level of colloquial syntax both are written as abc.

which may lead to confusion.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 95

 true ➔ dep.(ob-obn.at-ide)

An expression that returns a value assigned to an attribute of an object may be evaluated successfully only if

this attribute is visible in the current state. Here we realize the rules 1 and 2.1 of Sec. 5.4.3. Next constructor

corresponds to calling a functional procedure:

call-fun-pro : Identifier x Identifier x ActParDen ⟼ValExpDen

We postpone its definition till Sec.6.6.4.2 where we discuss procedure calls.

As an example of a constructor based on a data constructor we show a constructor associated with the di-

vision of real numbers:

ved-divide-re: ValExpDen x ValExpDen ⟼ ValExpDen i.e.
ved-divide-re: ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error
ved-divide-re.(ved-1, ved-2).sta =
 is-error.sta ➔ error.sta
 ved-i.sta = ? ➔ ? for i = 1,2
 ved-i.sta : Error ➔ ved-i.sta for i = 1,2
 let
 val-i = ved-i.sta for i = 1,2
 val = td-divide-rea.(val-1, val-2)
 true ➔ val

Our constructor “calls” the typed-data constructor td-divide-re (see Sec. 4.3) that performs the following

actions:

1. checks if val-i’s are of real types, and if val-2 is different from zero,

2. divides data parts of these values; this constructor also checks if the result is not too large, and if it is

so, it generates an error message indicating an overflow,

3. returns the computed quotient or an error.

Since in the domain of typed data (Sec. 4.3) we have not defined constructors of boolean data (explanation

below), we have to define constructors of boolean-expression denotations now, and we define them “from

scratch”. There are two groups of boolean expressions that we shall discuss. First group is built over compar-

ison relations such as, e.g., an equality relation.

equal : ValExpDen x ValExpDen ⟼ ValExpDen i.e.

equal : ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error
equal.(ved-1, ved-2).sta =
 is-error.sta ➔ error.sta
 ved-i.sta = ? ➔ ? for i = 1,2
 ved-i.sta : Error ➔ ved-i.sta for i = 1,2
 let
 (cor-i, typ-i) = ved-i.sta for i = 1,2
 typ-1 ≠ typ-2 ➔ ‘compared values must be of the same type’
 not comparable.typ-1 ➔ ‘values not comparable’
 cor-1 = cor-2 ➔ (tt, ‘boolean’)
 true ➔ (ff, ‘boolean’)

We assume that comparable is a metapredicate (a parameter of our model) that distinguishes between com-

parable and not comparable values depending on their types. The use of this metapredicate explains why we

have not introduced comparison constructors at the level of data44.

44 As a matter of fact, we could have introduced comparison constructors at the level of values, but for the sake of uni-
formity we decided to introduce them at the level of expressions where we define constructors corresponding to logi-
cal connectives.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 96

Second group of boolean constructors is associated with logical connectives. Below we show an example

of such a constructor associated with alternative:

ved-or : ValExpDen x ValExpDen ⟼ ValExpDen i.e.
ved-or : ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error
ved-or.(ved-1, ved-2).sta =
 is-error.sta ➔ error.sta
 ved-1.sta = ? ➔ ?
 ved-1.sta : Error ➔ ved-1.sta
 let
 (cor-1, typ-1) = ved-1.sta

typ-1 ≠ ‘boolean’ ➔ ‘boolean value expected’
 cor-1 = tt ➔ (tt, ‘boolean’)

ved-2.sta = ? ➔ ?
ved-2.sta : Error ➔ ved-2.sta

 let
 (cor-2, typ-2) = ved-2.sta
 typ-2 ≠ ‘boolean’ ➔ ‘boolean value expected’
 cor-2 = tt ➔ (tt, ‘boolean’)
 true ➔ (ff, ‘boolean’)

Note that the constructed expression denotation is not transparent for errors, and even not for undefinedness.

If ved-1 evaluates to (tt, ‘boolean’), then the final result is (tt, ‘boolean’) even if the evaluation of ved-2

generates an error or loops. This evaluation pattern is referred to as lazy evaluation. The opposite is an eager

evaluation — as in all remaining examples of constructors — where we evaluate both subexpressions in the

first place, and only then try to calculate the final result. Due to the laziness of our constructor an expression

like

x > 0 implies 1/x > 0 i.e. x ≤ 0 or 1/x > 0

is true for all values of x that are less or equal zero. Note that with an eager evaluation it would generate an

error for x = 0. Note, however, that at the same time a “nonsensical” expression

x > 0 implies x+y

is also true for x that are less or equal zero. In this case for x greater than zero our expression will generate an

error message ‘boolean value expected’.

Our last constructor correspond to if-then-else-fi expressions.

ved-if : ValExpDen x ValExpDen x ValExpDen ⟼ ValExpDen

ved-if.(ved-1, ved-2, ved-3).sta =
 is-error.sta ➔ error.sta
 ved-1.sta = ? ➔ ?

let
val-1 = ved-1.sta

val-1 : Error  val-1
let

(cor-1, typ-1) = val-1
typ-1 ≠ ‘boolean’  ‘boolean-expected’
cor-1 = tt  ved-2.sta
cor-1 = ff  ved-3.sta

Here we also have to do with a lazy evaluation. In this case the advantage of laziness is even better visible.

Consider the following example written in an anticipated syntax:

if x > 0 then sqr(x) else sqr(-x) fi

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 97

where sqr(x) denotes the square root of x. With an eager evaluation this expression evaluates to an error for all

x except x = 0.

One methodological remark is necessary at the end and it concerns a question why we do not introduce in

our algebra of denotations a carrier of boolean expressions, i.e., expressions with boolean values? We might

use such expressions in building if-then-else-fi and while-do-od instructions, syntactically eliminating in this

way the source of a typing errors, when a control expression generates a not-boolean value. Let us then ana-

lyze consequences of such a solution.

If we assume to have boolean expressions, then in seems natural to have among them boolean variables.

The denotations of such variables would be then constructed by the following constructor:

boo-variable : Identifier ⟼ BooExpDen

boo-variable : Identifier ⟼ WfState ⟶ BooValE
boo-variable.ide.sta
 is-error.sta ➔ error.sta
 let
 (env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 obn.ide = ? ➔ ‘variable not declared’
 dep.(obn.ide) = ? ➔ ‘variable not initialized’
 sort-va.(dep.(obn.ide)) ≠ ‘boolean’ ➔ ‘boolean value expected’
 true ➔ dep.(obn.ide)

This constructor checks if the value of the variable is boolean, whereas the earlier defined constructor

val-variable : Identifier ⟼ BooExpDen

does not check this property. Consequently at the level of abstract syntax (Sec. 7.2.3) we would have two

categories or variables

ved-variable(ide) and

boo-variable(ide)

So far, everything is fine. But what about concrete syntaxes of variables? Can the abstract-to-concrete ho-

momorphism glue them together? The answer is, not, since their denotations are different. The consequence

of having boolean expressions as a syntactic category is therefore to have two syntactic categories of varia-

bles. Such a solution, although technically possible, seems not quite practical, since in such a case variables

had to be somehow marked.

6.4.2 Yoke expressions

Yoke expressions in Lingua are used in the declarations of variables and in the declarations of class attrib-

utes (Sec. Sec. 6.7.4.2 and 6.7.4.3). We shall not use them in procedure declarations since the references of

formal parameters will be getting the yokes of the references of actual parameters (Sec. 6.6.3.4). They are

also extensively used in Lingua-SQL (Sec. 11), but technically in a differ way than here.

Since yokes will not be storable — an engineering decision to be seen in Sec. 5.3 — the denotations of

yoke expressions could have been made just yokes. Nevertheless, we define them as functions on states to

allow for the generation of values — used in the creation of yokes — by value expressions.

yed : YokExpDen = WfState → YokeE

Consequently, we have to assume that our denotations are partial functions and that they me return errors

instead of yokes. In this way yoke-expression denotations may generate errors on two levels: when they gen-

erate yokes, and when the generated yokes are applied to values.

Constructors of yoke-expression denotations are derived from constructors of yokes defined in Sec. 4.4. In

the signatures of these constructors domain Yoke is replaced by YokExpDen and domain TypDat by

ValExpDen. E.g., from yoke constructor

yo-give-td : TypDat ⟼ Yoke

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 98

we derive the following constructor of denotations

yed-give-td : ValExpDen ⟼ YokExpDen i.e.
yed-give-td : ValExpDen ⟼ WfState → YokeE
yed-give-td.ved.sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?
 let
 val = ved.sta
 val : Error ➔ val
 sort-t.val : Identifier ➔ ‘objects are not allowed’
 true ➔ yo-give-td.val

This constructor given a value-expression denotation returns a yoke-expression denotation that given a state

generates a yoke that given an arbitrary typed data generates the value of the value expression. The generated

yoke is a partial function since it “calls” a value-expression denotation that is partial.

Another example of a constructor that takes a value-expression denotation as an argument is the construc-

tor corresponding to the yoke that gets an element of an array:

yed-get-from-ar : ValExpDen ⟼ YokExpDen
yed-get-from-ar : ValExpDen ⟼ WfState → YokeE
yed-get-from-ar.ved.sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?
 let
 val = ved.sta
 val : Error ➔ val
 sort-t.val ≠ ‘integer’ ➔ ‘integer expected’
 true ➔ yo-get-from-ar.val

The definitions of the remaining constructors are analogous.

6.4.3 Type expressions

Type expressions are used in four contexts:

1. in type declarations, where we build a new type and store it in a type environment of a class for future

use,

2. in variable declarations, where we declare a new variable and assign a profile to it (we recall that

types are components of profiles),

3. in attribute declaration — analogously,

4. in pre-procedure declarations, where we assign profiles to formal parameters.

The signatures of constructors of type-expressions denotations are the following:

ted-create-bo : ⟼ TypExpDen
ted-create-in : ⟼ TypExpDen
ted-create-re : ⟼ TypExpDen

ted-create-tx : ⟼ TypExpDen
ted-create-ot : Identifier ⟼ TypExpDen

ted-constant : Identifier x Identifier ⟼ TypExpDen
ted-create-li : TypExpDen ⟼ TypExpDen
ted-create-ar : TypExpDen ⟼ TypExpDen

ted-create-re : Identifier x TypExpDen ⟼ TypExpDen
ted-put-to-re : Identifier x TypExpDen x TypExpDen ⟼ TypExpDen

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 99

First constructor is a zero-argument constructor that creates a boolean-type expression denotation “out of

nothing”:

ted-create-bo.().sta =
is-error.sta ➔ error.sta
true ➔ ‘boolean’

The presence and the role of this constructor in AlgDen is the same as in the case of the constructors of iden-

tifiers. The remaining zero-argument constructors are defined in a similar way.

Constructors of the next subgroup are created from these type constructors that create “new types”. For in-

stance:

ted-create-re.(ide, ted).sta =
 is-error.sta ➔ error.sta
 ted.sta : Error ➔ ted.sta
 let
 typ = ted.sta
 true ➔ ty-create-re.(ide, typ)

This constructor calls constructor ty-create-re from our algebra of typed data. Note that, e.g., the body con-

structor ty-put-to-re does not create a new body, and therefore we do not introduce a corresponding con-

structor of denotations.

So far we have defined constructors corresponding to the types of data. Our next constructor builds the

denotation of an expression that returns a type of an object, i.e. an identifier:

ted-create-ot.ide.sta =
 is-error.sta ➔ error.sta
 true ➔ ide

Although intentionally ide is supposed to be the name of a class, we do not check, if this is indeed the case,

since — as we are going to see in Sec. 6.7.4.2 — we may need to define an object type (temporarily) associ-

ated with a class which “hasn’t been declared yet”. However, as we are going to see in Sec. 6.7.4.3, such

“undefined object types”, will not be declarable.

Our last constructor is ted-constant that corresponds to a type-constant. This constructor describes the

action of reading a previously declared type from a type environment of a class:

ted-constant.(ide-cl, ide-ty).sta =
 is-error.sta ➔ error.sta
 let
 ((cle, mee, cov), sto) = sta
 cle. ide-cl = ? ➔ ‘class unknown’
 let
 (ide-cl, tye, mee, obn) = cle.ide-cl well-formedness of sta
 tye.ide-ty = ? ➔ ‘type unknown’
 tye.ide-ty = Θ ➔ ‘type not concretized’
 true ➔ tye.ide-ty

We are talking here about “constants”, since a type once assigned to an identifier in a class can’t be changed.

At the end a comment about structured data types such as list-, array, or record types. Notice that object

types are never structural in this way, i.e. we may build a type of integer arrays, but not of object arrays. This

is an engineering decision.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 100

6.4.4 Reference expressions

In programming languages without such deep value-structures such as our objects, a reference on the left-

hand side of an assignment is represented by a single identifier. In our case the situation is different, since we

may wish to assign a value to a deep reference in an object, as, e.g.,

node.next.no := 11

(cf. example discussed in Sec. 5.1). To handle this problem, we introduce expressions that given a state return

a reference, or an error:

red : RefExpDen = WfState ⟼ ReferenceE

We shall need only two constructors of the denotations of such expressions. The first one corresponds to a

single variable:

ref-variable : Identifier ⟼ RefExpDen i.e.
ref-variable : Identifier ⟼ WfState ⟼ ReferenceE
ref-variable.ide.sta =
 is-error.sta ➔ error.sta
 let
 (env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 obn.ide = ? ➔ ‘variable not declared’
 true ➔ obn.ide

Our second constructor builds expression denotations that may return references assigned to deep attributes

of objects:

ref-attribute : ValExpDen x Identifier ⟼ RefExpDen i.e.
ref-attribute : ValExpDen x Identifier ⟼ WfState ⟼ ReferenceE
ref-attribute.(ved, at-ide).sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?
 ved.sta : Error ➔ ved.sta
 ved.sta /: Object ➔ ‘object expected’
 let
 (va-obn, va-ide) = ved.sta
 (env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 va-obn.at-ide = ? ➔ ‘attribute not declared’
 let
 (tok, (typ, yok, at-ota)) = va-obn.at-ide
 at-ota ≠ $ and at-ota ≠ st-ota ➔ ‘attribute not visible’
 true ➔ va-obn.at-ide

Here we realize the rules 1. and 2.2 of Sec. 5.4.3. As we see, references computed by reference expressions

are always pointed either by variables or by object attributes. In other words, the only operations that allow

us to get references are selection operations. It is, of course, an engineering decision.

6.5 Instructions

6.5.1 Signatures of constructors

Instructions modify state by assigning new values to variables and attributes. We shall define the following

constructors of instruction denotations:

atomic instructions

assign : RefExpDen x ValExpDen ⟼ InsDen assignments

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 101

call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ InsDen imp. proc. calls

call-obj-con : Identifier x Identifier x Identifier x ActParDen ⟼ InsDen obj. const. calls

skip-ins : ⟼ InsDen trivial instruction

structural instructions

if : ValExpDen x InsDen x InsDen ⟼ InsDen conditional instructions

if-error : ValExpDen x InsDen ⟼ InsDen error elaboration

while : ValExpDen x InsDen ⟼ InsDen while loops
compose-ins : InsDen x InsDen ⟼ InsDen sequential compos.

Atomic instructions are called in this way, since they do not include other instructions as their components.

The skip instruction has a technical character and has been introduced to cover the case of functional pro-

cedures (Sec.6.6.4.1) whose bodies consist of an expression alone, i.e. without a preceding program. Its deno-

tation is an identity function on states.

The calls of imperative procedures and of object constructors will be described in Sec. 6.6.3.6 and Sec.

6.6.5.3.

6.5.2 Assignment instructions

An assignment instruction computes a reference and a value, and then assigns this value to this reference in

the current deposit:

assign : RefExpDen x ValExpDen ⟼ InsDen
assign : RefExpDen x ValExpDen ⟼ WfState → WfState
assign.(red, ved).sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?

ved.sta : Error ➔ sta ◄ ved.sta
red.sta : Error ➔ sta ◄ red.sta

 let
 val = ved.sta
 ref = red.sta
 (tok, (typ, yok, re-ota)) = ref

(env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 re-ota ≠ $ and re-ota ≠ st-ota ➔ sta ◄ ‘reference not visible’
 not ref VRA.cov val ➔ sta ◄ ‘incompatibility of types’
 yok.val : Error ➔ sta ◄ yok.val
 sort.(yok.val) ≠ ‘boolean’ ➔ sta ◄ ‘yoke not boolean’

yok.val = (ff, ‘boolean’) ➔ sta ◄ ‘yoke not satisfied’
 let
 new-sta = (env, (obn, dep[ref/val], st-ota, sft, 'OK'))

true ➔ new-sta

In this definition we realize the rule 2.2 of Sec. 5.4.3.

6.5.3 Structural instructions

Structural instructions are built from atomic instructions using four constructors announced in Sec. 6.4. A

conditional composition of instructions is defined as follows:

if : ValExpDen x InsDen x InsDen ⟼ InsDen

if.(ved, ind-1, ind-2).sta =
is-error.sta  sta
ved.sta = ?  ?

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 102

ved.sta : Error  sta ◄ ved.sta
let

val = ved.sta
val : Object ➔ sta ◄ ‘typed data expected’
let
 (dat, typ) = val
typ ≠ ‘boolean’  sta ◄ ‘boolean value expected’
dat = tt  ind-1.sta
true  ind-2.sta

Note that due to while loops (see below) and imperative-procedure calls (Sec. 6.6.3.6) the execution of both

component instructions may be infinite, which means that the state ind-1.sta or ind-2.sta may be undefined.

The next structural constructor is related to an error-handling mechanism. It activates a rescue action that

is an instruction associated with an error message indicated by value expression, called error trap, whose

value is a word identical with this message.

if-error : ValExpDen x InsDen ⟼ InsDen

if-error.(ved, ind).sta =
 not is-error.sta ➔ sta

let
message = error.sta
sta-1 = sta ◄ ‘OK’

ved.sta-1 = ? ➔ ?
let
 val = ved.sta-1
val : Error ➔ sta ◄ ‘trap generates an error’
let
 (cor, typ) = val
typ ≠ ‘text’ ➔ sta ◄ ‘word expected’
cor ≠ message ➔ sta ◄ ‘trap not adequate’
ind.sta-1 = ? ➔ ?
let
 sta-2 = ind.sta-1
is-error.sta-2 ➔ sta ◄ ‘rescue action generates an error’
true ➔ sta-2

If the input-state sta does not carry an error, then this state becomes the output state, since there is no error to

handle.

In the opposite case, a temporary state sta-1 is created by removing error err from sta. In the new state,

we compute the value of the trap expression ved. Seven situations may happen in this moment:

1. the evaluation of trap expression does not terminate,

2. the evaluation terminates, but the computed value is an error,

3. the computed value is not a word value,

4. the computed value is a word value, but its data part is different from the error message that we want

to trap,

5. the computed value caries the trapped message, but the rescue instruction does not terminate ,

6. the rescue instruction terminates but it generates an error message itself,

7. the rescue instruction terminates without an error, and its terminal state is the resulting state.

Of course, the above constructor should be regarded as an example, only showing that error-handling mecha-

nisms may be described in our model.

The definition of the constructor of while loops involves a fixed-point definition of the constructed in-

struction:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 103

while : ValExpDen x InsDen ⟼ InsDen

while.(ved, ind).sta =
is-error.sta  sta
ved.sta = ?  ?
ved.sta : Error  sta ◄ ved.sta
let

val = ved.sta
val : Object ➔ ‘typed data expected’
let
 (dat, typ) = val
typ ≠ ‘boolean’  sta ◄ ‘boolean value expected’
dat = ff  sta
ind.sta = ? ➔ ?
ind.sta : Error ➔ ind.sta
true  (while.(ved, ind))).(ind.sta)

Notice that the unique (least) solution of this equation is not the while constructor, but the effect of its appli-

cation to its arguments, i.e. while.(ved, ind).

Due to while instructions, the denotations of instructions may be partial functions. The partiality of

while.(ved, ind) may happen in three situations:

1. the evaluation of the boolean expression ved does not terminate; this may be the case if ved calls a

functional procedure,

2. the execution of the body ind does not terminate,

3. the execution of the “main loop” does not terminate.

Comment 6.5.3-1 In the definition of while we have to do with a fixed-point equation in a CPO of partial functions
InsDen (Sec. 2.7). For any pair (ved, ind) the solution of this equation is the denotation:

while.(ved, ind) : State → State

To see this equation written explicitly in our CPO, let us introduce the following notations:

NotOK = {(sta, sta) | is-error.sta}

ExpEr = {(sta, sta ved.sta) | ved.sta : Error}

IsObj = {(sta, sta ’typed data expected) | ved.sta : Object}

NotBoo = {(sta, sta ’boolean-expected’) | ved.sta is not a boolean value}

FF = {(sta, sta) | ved.sta = (ff, ‘boolean’)}

TT = {(sta, sta) | ved.sta = (tt, ‘boolean’)}

Now, our equation is the following:

X = NotOK | ExpEr | IsObj | NotBoo | FF | TT●ind●X

Since the operators | and ● are continuous, the least solution of that equation exists, and since the coefficients of
that equations have mutually disjoint domains, from Theorem 2.7-1 we may conclude that its solution is a function,
and may be described by the following formula:

X = (TT● ind)* ● (NotOK | ExpEr | IsObj | NotBoo | FF)

The last constructor of structural instructions corresponds to sequential composition of instructions, and is the

following:

compose-ins : InsDen x InsDen ⟼ InsDen
compose-ins.(ind-1,ind-2) = ind-1 ● ind-2

Sequentially composed instructions are executed one after another.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 104

6.6 Methods

6.6.1 An overview of methods

Methods in our model fall into three basic operational categories:

• imperative methods,

• object constructor methods,

• functional methods.

In each of these categories a method may be abstract or concrete. Abstract methods will be otherwise called

procedure signatures, and concrete methods — procedures or object constructors respectively. The domain

of methods and related domains are defined by the following equations (for actual-parameter denotations and

the denotations of signature (see Sec. 6.1):

met : Method = Procedure | ProSigDen methods

pro : Procedure = ImpPro | FunPro | ObjCon procedures

ipr : ImpPro = ActParDen x ActParDen ⟼ Store → Store imperative procedures

fpr : FunPro = ActParDen x TypExpDen ⟼ Store → ValueE functional procedures

oco : ObjCon = ActParDen x Identifier ⟼ Store → Store object constructors45

prs : ProSigDen = ImpProSigDen | FunProSigDen | ObjConSigDen proc. signature denotations

It must be emphasized that domains associated with concrete methods are not the carriers of our algebra of

denotations (cf. Sec. 6.1). Therefore, they will not have syntactic counterparts. This is why we are not talking

about “procedure denotations”, but about “procedures” as such. At the side of syntax we will only have pro-

cedure declarations and calls, and their denotation will belong to the denotations of declarations and of in-

structions respectively.

In turn, procedure signatures will be represented at the side of syntax, and therefore we talk about their

denotations. Their simple constructors will be defined in Sec. 6.6.2.

It may be worth mentioning in this place that procedures and procedure-signature denotations belong to

two different worlds. Procedures are functions that given actual parameters return store-to-store functions.

Note that actual parameters do not have types, since they are just identifiers. In turn, signatures are not func-

tions. They are lists of formal-parameter denotations, and formal parameter do have types! Signatures may be

said to be “incomplete procedure-declarations” (they have no bodies), whereas procedures are the effects of

procedure declarations.

In this overview we shall concentrate on procedures, since their model requires some specific solutions.

Let’s start from imperative procedures that are functions which take two lists of actual parameters — val-

ue parameters and reference parameters — and return store-to-store functions. We shall assume that refer-

ence parameters will constitute a unique communication channel between procedures and the “external

word”. A possible alternative might be the introduction of global variables, but such a solution would com-

plicate rules of the construction of correct procedure calls (cf. Sec. 9.4.6.3), and besides would be — in our

opinion —error prone. We want to make sure that all interactions of a procedures with global states will be

explicit in their declarations.

A second important issue about procedures is that they modify stores rather than states. Although proce-

dure calls will be state-to-state functions, we can’t assume procedures to be such functions, since it would

45 “Object constructors” should not be confused with “constructors in algebras”. The former constitute a category of
procedures, whereas the latter are functions “between” carriers of algebras. We decided to use the same word in
both cases because the literature has already established customs to call them that way.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 105

lead to a situation where a procedure may take as an argument a state, where this procedure has been de-

clared. In a simplified version such a situation would lead to the following set of domain equations:

Procedure = State → State
State = Identifier ⟹ Procedure

This set can’t be solved on the ground of usual set theory, since no function can take itself as an argument.

Self-applicable functions constitute so called reflexive domains46, and have been used in early denotational

models of Algol 60, where a procedure can take itself as a procedural parameter47.

After these explanations, let’s note that to use procedures in a programming language we need tolls:

• to create them,

• to declare them, i.e. to save them in states,

• to call, and execute them.

In earlier versions of our denotational model investigated in [30], [32], [35] and [39] procedures were created

by declarations out of procedures’ components and were saved in the environments of states. Recursive pro-

cedures were defined as least solutions of single fixed-point equations and mutually recursive procedures as

least solutions of sets of such equations.

If we would like to apply this mechanism in our case, we had to assume that all procedure declarations of

all classes are elaborated simultaneously, meaning that all classes have to be declared simultaneously and

recursively. Such a solution would lead to technical complications since, in that case, we would have to de-

fine a chain-complete partial order (a CPO, see Sec. 2.4) in the domain of classes. A CPO in a set of tuples of

a common length (like classes) is usually defined componentwise. Now, whereas to define a CPO in the do-

main of procedure environments is a rather routine task, it is not clear (at least not clear for us), how to define

an adequate CPO in the domains of type environments and objectons.

Facing this problem we decided to move the creation of procedures from the time of their declarations in

classes to a later time when all classes have been declared, but prior to the time when procedures are called.

Technically the declarations of procedures in classes will not create and store procedures, but only pre-

procedures that will be later used to create all procedures “in one step” once all classes have been declared.

In this step programs perform one global declaration open-pro-den (Sec. 6.7.6). To simplify future rules of

program construction we have assumed in Sec. 6.3 that this operation appears only once in every program

and is located between declarations and instructions.

As a consequence of our assumption, pre-procedures will be defined as functions that given an environ-

ment return a procedure. The domains of pre-procedures are therefore the following:

ppr : PrePro = ImpPrePro | FunPrePro | ObjPreCon pre-procedures

ipp : ImpPrePro = Env ⟼ ImpPro imperative pre-procedures
fpp : FunPrePro = Env ⟼ FunPro functional pre-procedures

opc : ObjPreCon = Env ⟼ ObjCon object pre-constructors

When a procedure pro is called we execute the corresponding pre-pro in a declaration time environment dt-
env, i.e., we execute the function

pre-pro.dt-env : Store → Store

which given a call-time store returns a new store. The declaration-time environment is common to all proce-

dures, and is the environment passed to open-procedures. Since no declarations follow open-procedures,
all states that follow the execution of this declaration have a common environment which differs from the

declaration-time environment dt-env only by having procedures declared in procedure environment pre.

46 A model of self-applicable functions has been described by Dana Scott and Christopher Strachey [84] in 1970., but
its technical complexity discouraged researchers from its use. Independently it turned out that the use of self-
applicable functions in programming may be error prone.

47 This mechanism was implemented in Algol 60 by the so-called “copy rule”, where a compiler or interpreter copied the
text of a procedure body into the context of a program where this procedure was to be used.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 106

6.6.2 Signatures and parameters

We start from two simple constructors of lists (tuples) of identifiers:

build-loi : Identifier ⟼ ListOfIde

add-to-loi : Identifier x ListOfIde ⟼ ListOfIde

We skip their obvious definitions. Given this domain we may define declaration sections that consist of lists

of identifiers followed by a type-expression denotation and a yoke-expression denotation :

build-dse : ListOfIde x TypExpDen ⟼ DecSec

Such a section expresses the fact that the given identifiers are formal parameters of a given type, e.g., at the

side of syntax:

x, y, z array-of-integers

Formal-parameter denotations are tuples of declaration sections, hence we need two constructors to build

their domain:

build-fpd : DecSec ⟼ ForParDen

add-to-fpd : DecSec x ForParDen ⟼ ForParDen

First constructor makes a formal parameter denotation out of a declaration section, the second — adds a new

section to a parameter denotation. Their definitions are obvious. Now, we can show signatures of three con-

structors of the domains of formal and respectively actual parameters:

build-ipsd : ForParDen x ForParDen ⟼ ImpProSigDen

build-fpsd : ForParDen x TypExpDen ⟼ FunProSigDen

build-ocsd : ForParDen x ForParDen ⟼ ObjConSigDen

build-apd : ListOfIde ⟼ ActParDen build actual-parameter denotations

We again skip their obvious definitions.

At the end let us explain the idea of abstract methods, i.e. of signatures. As we know, an important part of

classes constitute methods. Ultimately these methods should be concrete, since only then we may use (call)

them. However, we may wish to define a parent class with abstract methods to have more flexibility in the

creation of their (inheriting) children classes. We thus do not define concrete procedures, but only their

“types” represented by lists of parameters.

6.6.3 Imperative pre-procedures

6.6.3.1 An intuitive understanding

First step on the way to understand the mechanism of imperative procedures is to understand the execution of

their calls. Since an imperative-procedure call is an instruction, it takes an initial state, and transforms it into

a terminal state. These states will be called global states to distinguish them from local states that the proce-

dure creates to execute its body.

The execution of a call of a procedure declared in class MyClass is performed in four steps illustrated in

Fig. 6.6-1.

1. A local initial store li-sto is created where initially the only variables bound in the objecton are the

identifiers of formal parameters. Value parameters point to new references, and these references point

to the twins (Sec. 4.4) of the values of actual value-parameters. Reference parameters point to the ref-

erences of actual parameters. Local initial deposit carries all reference of the global deposit, but all

these references, except the references of reference parameters, are orphan references. The origin tag

of the local store is MyClass.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 107

2. A local initial state is created by combining a declaration-time environment dt-env with the local ini-

tial store. The declaration-time environment must be, therefore, somehow “remembered” when the

procedure is declared.

3. The local initial state is transformed by the body of the procedure (a deep program) into a local ter-

minal state (lt-env, lt-sto). During the execution of the body some local (temporary) value variables,

classes, types and procedures may be declared.

4. The local terminal state is transformed into a global terminal state, with the (unchanged) global initial

environment gi-env and a global-terminal store gt-sto, where actual reference parameters regain ac-

cess to their earlier references. All locally declared items cease to exist.

One comment is necessary about the declaration-time environment mentioned in point 2. As we are going to

see in Sec. 6.7.6, this environment is “loaded” to a procedure when this procedure is created by a global dec-

laration open-procedures, which is executed as the last declaration in a program (Sec. 6.3). Consequently,

the environments of all consecutive states of the program have the same environment which is the output

environment of global declaration.

Fig. 6.6-1 The execution of an imperative-procedure call

6.6.3.2 Creating imperative pre-procedures

A formal description of the execution illustrated in Fig. 6.6-1 is included in the definition of a constructor of

imperative pre-procedures. We recall that pre-procedures became procedures when they receive an environ-

ment as an argument. In the definition below we use two functions describing the mechanisms of passing and

returning parameters, which will be defined later in Sec.6.6.3.4 and Sec.6.6.3.5 respectively.

create-imp-pre-pro : ImpProSigDen x ProDen x Identifier ⟼ ImpPrePro
create-imp-pre-pro : ForParDen x ForParDen x ProDen x Identifier ⟼

 ⟼ Env ⟼ ActParDen x ActParDen ⟼ Store → Store
create-imp-pre-pro.(fpd-v, fpd-r, prd, cl-ide).dt-env.(apd-v, apd-r).ct-sto =
 is-error.ct-sto ➔ ct-sto dt- declaration time

 let ct- call time

li-sto = pass-actual.(fpd-v, fpd-r, apd-v, apd-r, cl-ide).dt-env.ct-sto li- local initial
 is-error.li-sto ➔ ct-sto ◄ error.li-sto
 let
 li-sta = (dt-env, li-sto) local initial state

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 108

 prd.li-sta = ? ➔ ?
 let
 lt-sta = prd.li-sta local terminal state

 is-error.lt-sta ➔ ct-sto ◄ error.lt-sta
 let
 (dt-cle, dt-pre, dt-cov) = dt-env

(lt-env, lt-sto) = lt-sta
 gt-sto = return-formal.fpd-r.ct-sto.lt-sto.dt-cov

is-error.gt-sto ➔ ct-sto ◄ error.gt-sto
 true ➔ gt-sto global terminal store

First, the pre-procedure builds a local initial store by passing actual parameters to formal parameters and by

setting cl-ide, the name of a class, as the origin tag of the store. As we will see in Sec. 6.7.4.6, cl-ide will be

the class name where our pre-procedure will be defined. Then, it creates a local initial state by combining the

declaration-time environment with the call-time store.

The local initial state is transformed into a local terminal state by a program prd that constitutes the body

of the procedure.

If this transformation terminates, and does not issue an error, then the global terminal store is created by

returning the references of formal reference parameters to actual reference parameters, and by going back to

the call-time origin tag. If this store carries no error message, then it is issued by the procedure. Next the

mechanism of procedure call (Sec. 6.6.3.6 and Fig. 6.6-1) combines the global-terminal store with call-time

environment into global-terminal state.

6.6.3.3 A static compatibility of parameters

The first step in passing actual parameters to formal parameters consist in checking if they are statically

compatible with each other, i.e., if the lists of corresponding identifiers are of the same length, and addition-

ally there are no repetitions of identifiers on the list of formal parameters. To formalize this checking process

we define two auxiliary functions. We skip their (rather obvious, but tedious) formal definitions showing

only examples:

list-of-for-par : ForParDen ⟼ (Identifier x TypExpDen)c* e.g.

list-of-for-par.(((x, y, z), ted-1), ((q, r), ted-2)) =
((x, ted-1), (y, ted-1), (z, ted-1), (q, ted-2), (r, ted-2))

list-of-ide : (Identifier x TypExpDen)c* ⟼ Identifierc* e.g.

list-of-ide.((x, ted-1), (y, ted-1), (z, ted-1), (q, ted-2), (r, ted-2)) = (x, y, z, q, r)

Now, the checking function is defined as follows:

statically-compatible : ForParDen x ForParDen x ActParDen x ActParDen ⟼ Error | {‘OK’}

statically-compatible.(fpd-v, fpd-r, apd-v, apd-r) =
let
 for-val-par = list-of-ide.(list-of-for-par.fpd-v))
 for-ref-par = list-of-ide.(list-of-for-par.fpd-r))
 for-par = for-val-par © for-ref-par
are-repetitions.for-par ➔ ‘formal par repetitions’
length.for-val-par ≠ length.apd-v ➔ ‘incompatible numbers of value parameters’
length.for-ref-par ≠ length.apd-r ➔ ‘incompatible numbers of reference parameters’

 true ➔ ‘OK’

In words, the lists of formal and actual parameter denotations of a procedure call are statically compatible if:

1. no formal parameter appears twice on a combined list of value- and reference parameters; a similar

property of actual value-parameters is, of course, not required,

2. the mutually corresponding lists of formal and actual parameter denotations are of the same lengths.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 109

Note that empty lists of corresponding parameters are compatible.

The defined property is called static since it can be checked at compilation time, i.e., before program exe-

cution. Note that “static” does not mean “syntactic” — static compatibility requirement can’t be built into a

grammar, and therefore it can’t be checked by a syntax analyser.

6.6.3.4 Passing actual parameters to a procedure

Ten rozdział przeczytajcie szczególnie uważnie, bo jest w nim wiele technikaliów. ???

Function pass-actual describes the process of passing the values and references of actual parameters of a

procedure call to the body of the called procedure. Technically it creates a local initial store to be elaborated

by the body (Sec.6.6.3.2). Actual value-parameters must be declared and initialized, and actual reference-

parameters must be declared, but not necessarily initialized.

Fig. 6.6-2 illustrates the mechanism of passing parameters. As was already shown in Sec. 6.6.3.2, the en-

vironment of the local input state will be a declaration-time environment whereas its store will be a local ini-

tial store created by our function.

Fig. 6.6-2 Passing actual parameters to a procedure (a simplified picture)

We assume the following rules about the creation of local initial stores. All of them have an engineering

character:

1. The only identifiers bound initially in the local store are formal parameters. Of course, during the ex-

ecution of the call some local variables may be added (declared). As a consequence, procedures can’t

use global variables and, therefore, their only “side effects” are due to reference parameters.

2. The current references of actual reference-parameters ref-ar become the references of formal refer-

ence parameters ide-fr. To “meet the expectations” of procedure’s designer, the actual types of ide-
ar’s, i.e., the types of ref-ar’s, must be accepted by the declared types of formal parameters ide-fr’s.

In turn formal reference-parameters receive the yokes of actual parameters. We recall that when we

declare a procedure, we indicate the types of its formal parameters but leave their yokes unspecified

(a mathematical decision). Otherwise, we had to ensure the compatibility of actual with formal yokes,

i.e., we had to compare yokes, which might be challenging to implement.

3. Fresh references ref-fv’s are created for formal value-parameters. The types of these references are

the declared types of formal parameters, and their yokes are the yokes of actual references ref-av’s.

To these references we assign the twins (see later) t-val-av’s of the values val-av’s of actual parame-

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 110

ters. The new references must accept these twins. The picture shown in Fig. 6.6-2 is “simplified”

since making a twin of an object requires replacing all tokens of its references by fresh ones, which

may result in substantial modification (enrichment) of the deposit.

4. The origin tags of actual parameters become the origin tags of formal references, which seems to be

an obvious choice. If an actual parameter is public, the corresponding formal parameter should be

public as well. In turn, if it is private, then it should remain private with the unchanged origin in the

local state.

To define a function of passing actual to formal parameters, we shall need a function that given a value re-

turns its twin. A twin of a typed data is just this data, and a twin of an object is created by replacing all tokens

in this object by fresh ones. Before we proceed to a formal definition of this function let’s observe the follow-

ing facts:

1. A description of an object requires the context of a deposit, and therefore our function must modify

deposits.

2. The replacement of tokens by fresh tokens consumes tokens, and therefore our function must modify

sets of free tokens.

3. Due to the fact that objects may include cycles, we have to stop the replacement of “old” tokens by

new ones whenever we encounter a token that “is already new”. To do this our function will “monitor”

a set of new tokens.

To define the twining function we shall need two new domains:

snt : SetNewTok = Set.Token sets of new tokens48

tot : TupleOfTok = Tokenc* tuples of tokens

and two new functions:

tokens-of : Value x Deposit ⟼ Set.Token

get-new-tok : Integer x SetNewTok x SetFreTok ⟼ TupleOfTok x SetNewTok x SetFreTok

The first function given a value and a deposit returns the set of all tokens included in this value. We skip its

obvious definition. The second generates a tuple of fresh tokens and appropriately modifies the sets of new

tokens and free tokens. Its definition is the following:

get-new-tok.(n, snt, sft) =
 n ≤ 0 ➔ ‘number of tokens must be positive’
 n = 1 ➔
 let
 (tok, sft-1) = get-tok.sft
 snt-1 = snt | {tok}
 ((tok), snt-1, sft-1)
 n > 1 ➔
 let
 (tok, sft-1) = get-tok.sft
 snt-1 = snt | {tok}
 (tot, snt-2, sft-2) = get-new-tok.(n-1, snt-1, sft-1)
 ((tok) © tot, snt-2, sft-2)

The function that creates twins of values is the following:

create-twin : Value x Deposit x SetNewTok x SetFreTok ⟼
⟼ (Value x Deposit x SetNewTok x SetFreTok)

create-twin. (val, dep, snt, sft) =
val : TypDat ➔ (val, dep, snt, sft)

48 Formally speaking we do not introduce here a new domain since SetNewTok = Set.Token = SetFreTok, but a new
metaname to distinguish between two arguments of our function snt and sft that are of the same sort.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 111

tokens-of.val ⊆ snt ➔ (val, dep, snt, sft)

 let
 (obn, cl-ide) = val the argument value is an object

[ide-1/ref-1,…,ide-n/ref-n] = obn
 (tok-i, prf-i) = ref-i
 ((new-tok-1,…,new-tok-n), sft-1, snt-1) = get-new-tok.(n, snt, sft)

 new-ref-i =
tok-i : snt ➔ ref-i
true ➔ (new-tok-i, prf-i) for i = 1;n

 obn-1 = [ide-1/new-ref-1,…,ide-n/new-ref-n]
val-i = dep.ref-i for i = 1;n
(twin-val-1, dep-1, snt-2, sft-2) = create-twin.(val-1, dep, snt-1, sft-1)

 …
(twin-val-n, dep-n, snt-(n+1), sft-(n+1)) = create-twin.(val-n, dep-(n-1), snt-n, sft-n)

 new-dep = dep-n[new-ref-1/twin-val-1,…,new-ref-n/twin-val-n]
 twin-val = (obn-1, cl-ide)
 true ➔ (twin-val, dep-n, , snt-(n+1), sft-(n+1))

In the first step our function checks if the value val to be “twinned” is a typed data, and if this is the case, it

returns the same value. Deposit and both sets of tokens remain unchanged and the process stops.

If the value is an object (obn, cl-ide), then we check if all tokens in this value have been already replaced,

and if this is the case then the process stops.

Otherwise our function replaces all not-new references in obn by fresh references, and appropriately mod-

ifies the sets of new tokens and free tokens. Of course, in the first step of our recursion none of these refer-

ences are new, but in further steps such a situation may happen, if there are cycles in our object.

After the first step of our recursion we have a new objecton obn-1, but all its references are dangling.

Then, for every val-i assigned to a reference of the original obn we create recursively a twin of this value,

and we assign this twin to the corresponding reference of obn-1. In each such step we appropriately modify

the deposit and both sets of tokens “inherited” from the former step.

Nie wiem dlaczego, ale nie do końca jestem pewien definicji create-twin. Z drugiej jednak strony wydaje się

dość oczywiste, że taka funkcja musi dać się dobrze zdefiniować. ???

Now we are ready to define the function of passing actual to formal parameters. Let cl-ide be the name of

a class where our procedure is being declared:

pass-actual : ForParDen x ForParDen x ActParDen x ActParDen x Identifier ⟼
 ⟼ Env ⟼ Store ⟼ Store
pass-actual.(fpd-v, fpd-r, apd-v, apd-r, cl-ide).dt-env.ct-sto =
 is-error.ct-sto ➔ ct-sto call time store

1. checking the static compatibility of parameters
let

message = statically-compatible.(fpd-v, fpd-r, apd-v, apd-r)
message ≠ ‘OK’ ➔ ct-sto ◄ message

2. identifying the identifiers, values, and references of actual and formal parameters

 let
for k, n ≥ 0

 ((ide-fv.i, ted-fv.i) | i=1;k) = list-of-for-par.fpd-v (see Sec. 6.6.3.3)

 ((ide-fr.i, ted-fr.i) | i=1;n) = list-of-for-par.fpd-r
(ide-av.i | i=1;k) = apd-v
(ide-ar.i | i=1;n) = apd-r
(ct-obn, ct-dep, ct-ota, ct-sft, ‘OK’)) = ct-sto call-time store

(dt-cle, dt-pre, dt-cov) = dt-env declaration-time environment

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 112

ct-obn.ide-av.i = ? ➔ ct-sto ◄ ‘actual val. parameter not declared’ for i = 1;k
 ct-obn.ide-ar.i = ? ➔ ct-sto ◄ ‘actual ref. parameter not declared’ for i = 1;n
 let

ref-av.i = ct-obn.ide-av.i for i=1;k the references of actual value-parameters
ref-ar.i = ct-obn.ide-ar.i for i=1;n the references of actual reference-parameters

 ct-dep.ref-av.i = ? ➔ ct-sto ◄ ‘actual val. parameter not initialized’49 for i = 1;k
let

 val-av.i = ct-dep.ref-av.i for i = 1;k

 (dat-av.i, typ-av.i) = val-av.i for i = 1;k
(tok-av.i, (typ-rav.i, yok-rav.i, ota-av.i)) = ref-av.i for i = 1;k

(tok-ar.i, (typ-rar.i, yok-rar.i, ota-ar.i)) = ref-ar.i for i = 1;n
3. computing the types of formal parameters

let
de-typ-fv.i = ted-fv.i.(dt-env, ct-sto) declared types of formal value-parameter s for i = 1;k

 de-typ-fr.i = ted-fr.i.(dt-env, ct-sto) declared types of formal reference-parameters for i = 1;n
de-typ-fv.i : Error ➔ ct-sto ◄ d-typ-fv.i for i = 1;k
de-typ-fr.i : Error ➔ ct-sto ◄ de-typ-fr.i for i = 1;n

4. creating twins of formal value-parameters

let
sft-0 = ct-sft
snt-0 = { }
dep-0 = ct-dep
(twin-val-av.1, dep-1, snt-1, sft-1) = create-twin.(val-av.i, dep-0, snt-0, sft-0)
. . .
(twin-val-av.k, dep-k, snt-k, sft-k) = create-twin.(val-av.i, dep-(k-1), snt-(k-1), sft-(k-1))

5. creating references for formal value-parameters

let
((tok-fv.1,…,tok-fv.k), snt, new-sft) = get-new-tok.(k, { }, sft-k)50

new-ref-fv.i = (tok-fv.i, (de-typ-fv.i, yok-av.i, ota-av.i)) for i = 1;k
6. checking type acceptance of:

 actual value-parameters by formal value-parameters

 not de-typ-fv.i TTA.dt-cov typ-av.i ➔ sta ◄ ‘value parameters not compatible’ for i = 1;k
 actual reference-parameters by formal reference-parameters

 not de-typ-fr.i TTA.dt-cov typ-rar.i ➔ sta ◄ ‘reference parameters not compatible’ for i = 1;n
7. creating a local initial objecton of the store

let
li-obn-fv = [ide-fv.1/new-ref-fv.1,…,ide-fv.k/new-ref-fv.k] the binding of formal val-param.

li-obn-fr = [ide-fr.1/ref-ar.1,…,ide-fr.n/ref-ar.n] the binding of formal reference-parameters

li-obn = li-obn-fv ⧫ li-obn-fr local initial objecton

8. creating a local initial object deposit

li-dep = dep-k[new-ref-fv.1/twin-val-av.1,…,new-ref-fv.k/twin-val-av.k] bind. twins to new ref.

9. creating a local initial store

li-sto = (li-obn, li-dep, cl-ide, new-sft, ‘OK’)
10. creating a local initial state

li-sta = (dt-env, li-sto)
true ➔ li-sta

49 Mathematically we could have assumed that not initialized value parameters are allowed, but such parameters would
have not too much of a practical sense, since they would act as local variables. If, therefore, a not initialized parame-
ter is passed to a procedure call, we may have a justified supposition that it is a programmer’s mistake, rather than
an intention. Consequently we signalize an error. The situation with reference parameters is, of course, different.

50 In this place we use the function get-new-tok to generate tokens for the future reference of formal value parameters.
In this context we do not need to monitor a set of new tokens but our function must be given such a set as an argu-
ment. Since it can be an arbitrary set, we choose the empty set { } to play this role.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 113

Function pass-actual performs the following steps:

1. checks the static compatibility of actual with formal parameters,

2. identifies/computes:

a. the identifiers of actual and formal parameters,

b. the references of actual parameters; if they are not declared, then an error is signalized,

c. the values of actual-value parameters; if they are not initialized, then an error is signalized;

note that actual reference parameters need not be initialized,

3. computes the types of formal parameters; these types are computed in a state carrying a declaration-

time environment, but the types declared in this environment (in its classes) are the same as the types

in the call-time environment51,

4. creates twin values for formal value-parameters; for not-object values twins are just these values,

whereas the twins of object differ from the source objects only in internal tokens (rule 7. in Sec. 5.4.3),

5. creates new references for formal value-parameters; they get fresh tokens, declared types of formal pa-

rameters, and the yokes and origins of actual parameters,

6. checks the acceptance for declaration-time covering relation of:

a. types typ-av.i of the values of actual value-parameters by the declared types de-typ-fv.i of cor-

responding formal parameters,

b. types typ-rar.i of the references of actual reference-parameters by the declared types de-typ-
fr.i of corresponding formal parameters,

7. creates a local initial objecton by assigning created references to formal value-parameters, and the

(old) references of actual reference-parameters to formal reference-parameters; the actual values are

accepted by the new references, because they differ from the “old” references by tokens only,

8. creates a local initial deposit as an extension of the call-time deposit by new references bound to the

values of actual value-parameters; note that all “old” references of actual value parameters remain

bounded in the new deposit, but now they are orphan references, which means that we can’t access

them from the local state,

9. creates a local initial store with new objecton, new deposit, new set of free tokens, and cl-ide (the

name of the hosting class) as its origin tag (rule 6 in Sec. 5.4.3),

10. creates a local initial state by putting together the declaration-time environment with the local initial

store.

Two remarks are necessary about the required compatibility between the profiles of actual and formal param-

eters:

• In the case of value parameters, the references of formal parameters ref-fv’s are created by the passing

parameters mechanism (PPM) in such a way that the declared types of parameters become the types of

these references. Then PPM assigns to these references the values of actual parameters, and therefore

the types of these values — which may be different from the declared types — must be acceptable by

the latter.

• In the case of reference parameters the situation is different. Now, PPM assigns the references of actu-

al parameters ref-ar’s to formal parameters ide-fr’s. Then we only request that the types of ref-ar’s are

accepted by the declared types. However, since TTA.cov is, by definition, transitive, also now de-

clared types will accept the types of actual values.

Notice that the described mechanism of creating local initial stores does not offer a possibility of using global

variables/attributes, i.e. variables/attributes visible both outside and inside procedure-bodies. All “external

interventions” of a procedure call must be realized by reference parameters, and therefore, must be explicitly

declared. In our opinion such a solution contributes to the clarity of programs, and also simplifies construc-

tion rules of correct programs with procedure calls (cf. Sec. 9.4.6.3).

6.6.3.5 Returning the references of reference parameters

By the end of the execution of a procedure call we reach a local terminal state that consists of:

51 It is the consequence of our assumption of Sec. 6.3 that all class declarations precede in programs all instructions.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 114

• a local terminal store, where the objecton binds formal parameters and possibly some local variables

declared in the body of the procedure,

• a local terminal environment, where possibly new local classes, pre-procedures and procedures have

been declared, and/or the covering relation has been augmented by new pairs of types.

Fig. 6.6-3 Returning references to actual reference-parameters of a procedure

Next, the exiting mechanism builds a global terminal state (Fig. 6.6-1) consisting of a call-time environment

— all locally declared classes and procedures, and new pairs of types in covering relation cease to exist —

and a global terminal store where actual reference parameters regain their call-time references. This store

consists of (Fig. 6.6-3):

• global call-time objecton — where all global variables, including actual parameters, “regain

visibility”, and all formal parameters and local variables cease

to exist; actual reference-parameters point (back) to their call-

time references,

• local terminal deposit — this deposit is passed unchanged to the global store, but the

(created by the call) references of formal value-parameters and

of local variables become orphan references; for the sake of

simplicity we do not introduce a garbage-collection mecha-

nism,

• global call-time origin tag of

the store

— note that the call-time origin tag may be: (1) either public-

visibility origin tag $, or (2) a class name; case (2) will happen,

if our procedure was locally declared and called in the body of

another procedure,

• local terminal set of used

references

— since we do not introduce a garbage collection mechanism, no

formerly used tokes are released (simplification of the model).

Before we formalize the mechanism of returning reference parameters, we introduce an auxiliary (meta)

predicate to be used at the exit of the procedure call in checking, if in the local terminal state:

A. all formal reference parameters are initialized (explanation below),

B. their values are acceptable by their references in the context of the call-time covering relation.

Of course, B. is a necessary condition for the global terminal store to be well-formed. As was already men-

tioned, condition B. may be unsatisfied, if the following situation takes place:

a. ide → (tok, (r-typ, yok, ota)) → (dat, v-typ) and

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 115

b. (r-typ, v-typ) : lt-cov but

c. (r-typ, v-typ) /: ct-cov

Note that case c. may happen if the local covering relation has been (locally) enriched by the pair (r-typ, v-
typ).

Parameters (identifiers) which satisfy A. and B. will be called adequate in a given state. This property is

formalized by the following predicate-like function:

adequate : Identifier ⟼ WfState ⟼ {tt, ff} | Error
adequate.ide.sta =
 is-error.sta ➔ error.sta
 let
 ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta
 obn.ide = ? ➔ ‘parameter not declared’
 dep.(obn.ide) = ? ➔ ‘parameter not initialized’
 let
 ref = obn.ide
 val = dep.ref
 ref VRA.cov val ➔ tt
 true ➔ ff

Having this function we can describe the mechanism of returning formal parameters:

return-formal : ForParDen ⟼ Store ⟼ Store ⟼ Env ⟼ Store
return-formal.fpd-r.ct-sto.lt-sto.dt-env =

is-error.lt-sto ➔ lt-sto
 let

(ct-obn, ct-dep, ct-ota, ct-sft, ‘OK’) = ct-sto
(lt-obn, lt-dep, lt-ota, lt-sft, ‘OK’) = lt-sto
(ide-fr.i | i=1;n) = list-of-ide.(list-of-for-par.fpd-r)

 adequate.(ide-fr.i).(dt-env, lt-sto) : Error ➔ ct-sto◄ adequate.(ide-fr.i).(dt-env, lt-sto) for i =
1;n

adequate.(ide-fr.i).(dt-env, lt-sto) = ff ➔ ct-sto◄ ‘ide-fr.i not adequate’ for i = 1;n
true ➔ (ct-obn, lt-dep, lt-sft, ct-ota, ‘OK’) for i = 1;n

The output store is a combination of:

• call-time objecton, and call-time origin tag,

• local-terminal deposit, and local-terminal set of free tokens.

Two facts are to be emphasized:

1. We do not allow a returned reference parameter to be not initialized condition A.). Note that this

could have happened since we allow passing noninitialized actual reference parameters to formal pa-

rameters (cf. Sec. 6.6.3.4). However, whereas not initialized reference parameters at the entrance of a

procedure call make sense, if the same happens at the exit, such parameters turn out to be useless.

Since it is rational to expect that a programmer may introduce useless parameters only by mistake, we

make an engineering decision to signalize an error whenever such a situation happens.

2. It could have happened that the value of a formal reference parameter ide-fr.i is of a type which was

accepted by its reference for local covering relation, but is not accepted for global (call-time) relation.

In such a case an error message should be generated. To do so, we use function adequate.

In point 2. we may see a problem, since formally this function gets a declaration-time environment (cf. Sec.

6.6.3.2), hence also a declaration-time covering relation dt-cov, and what we intend to do, is to check the

adequacy for call-time covering relation ct-cov. Note, however, that by assumption made in Sec. 6.3, if a

procedure is called prior to open procedures, then its call will abort, since our procedure is “not yet de-

clared”, and therefore we do not need “to care” about covering relation. On the other hand, if procedure is

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 116

called after open procedures, then we have the equality ct-cov = dt-cov, since no declaration may appear

after open procedure.

6.6.3.6 Calling an imperative procedure

The calls of imperative procedures are atomic instructions. Their mechanism is described by the following

constructor:

call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ InsDen
call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ WfState ⟶ WfState
call-imp-pro.(cl-ide, pr-ide, apd-v, apd-r).ct-sta =
 is-error.ct-sta ➔ ct-sta
 let
 (ct-env, ct-sto) = ct-sta call-time state
 (ct-cle, ct-pre) = ct-env

ct-pre.(cl-ide, pr-ide) = ? ➔ ct-sta ◄ ‘procedure-unknown’
 ct-pre.(cl-ide, pr-ide) /: ImpPro ➔ ct-sta ◄ ‘imperative-procedure-expected’
 let
 ipr = ct-pre.(cl-ide, pr-ide)
 ipr.(apd-v, apd-r).ct-sto = ? ➔ ?
 let
 gt-sto = ipr.(apd-v, apd-r).ct-sto global terminal store

 true ➔ (ct-env, gt-sto)

To call a procedure, we first seek it in the procedure environment of a state (cf. Sec. 6.6.1), and then we ap-

ply it to the current (i.e. call-time) store. We recall that the terminal store may be the call-time store with an

error (cf. Sec. 6.6.3.2).

6.6.4 Functional pre-procedures

6.6.4.1 Creating functional pre-procedures

Similarly to imperative pre-procedures, and for the same reason, we build functional pre-procedures. This

process is formalized in the following definition:

create-fun-pre-pro : FunProSigDen x ProDen x ValExpDen x Identifier ⟼ FunPrePro
create-fun-pre-pro : FunProSigDen x ProDen x ValExpDen x Identifier ⟼

 ⟼ Env ⟼ ActParDen ⟼ Store → ValueE
create-fun-pre-pro.(fps, prd, ved, cl-ide).dt-env.apd.ct-sto = dt- creation time, ct- call time

 is-error.ct-sto ➔ error.ct-sto
 let

(ct-obn, ct-dep, ct-sft, ct-ota, 'OK') = ct-sto
(fpd, ted) = fps functional-procedure signature

li-sto = pass-actual.(fpd, (), apd, (), cl-ide).dt-env.ct-sto local initial store
is-error.li-sto ➔ error.li-sto
let
 li-sta = (dt-env, li-sto) local initial state

ex-typ = ted.li-sta the expected type of the returned value

ex-typ : Error ➔ ex-typ
(prd ● ved).li-sta= ? ➔ ?
(prd ● ved).li-sta : Error ➔ (prd ● ved).li-sta

 let
(cor, typ) = (prd ● ved).sta-li lt- local terminal

 not ex-typ TTA.ct-cov typ ➔ ‘types-incompatible’
 true ➔ (cor, ex-typ)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 117

This constructor is defined analogously to the corresponding constructor of imperative pre-procedures. The

execution of its body consist in the evaluation of the argument value-expression ved in an output state of the

argument program prd. In this way we get an intermediate value (cor, typ), but the value finally returned by

the procedure is (cor, ex-typ), where ex-typ is the type expected by the procedure.

Note that we can’t issue simply (cor, typ), because, if typ has been locally declared, it will not be seen in

the global environment. Of course, before we output (cor, ex-typ) we have to check if its type accepts typ.

6.6.4.2 Calling functional procedures

The constructor corresponding to the calls of deep functional procedures is the following:

call-fun-pro : Identifier x Identifier x ActParDen ⟼ValExpDen
call-fun-pro : Identifier x Identifier x ActParDen ⟼ WfState ⟶ Value | Error
call-fun-pro.(cl-ide, pr-ide, apd).ct-sta = ct- call time

 is-error.ct-sta ➔ ct-sta
 let
 ((cle, pre, cov), ct-sto) = ct-sta
 pre.(cl-ide, pr-ide) = ? ➔ ‘procedure-unknown’
 pre.(cl-ide, pr-ide) /: FunPro ➔ ‘functional-procedure-expected’
 let
 fpr = pre.(cl-ide, pr-ide)
 fpr.apd.ct-sto = ? ➔ ?
 true ➔ fpr.apd.ct-sto

The called procedure is selected from the procedure environment, and then it is applied to the (call-time)

store of the current state. If this application terminates successfully, then the outputted value becomes the

output of the call. Note that fpr.apd.ct-sto may be an error.

6.6.5 Object pre-constructors

6.6.5.1 Object constructors versus imperative procedures

Similarly as in many OO languages, objects are created in our model exclusively by dedicated imperative

procedures called object constructors. For a class MyClass named ‘MyClass’ an object constructor associ-

ated with this class (declared in this class) is a function that given a list of actual parameters, and the name

ide of the future object, returns a store-to-store function that performs three major steps:

1. it creates an object of a class MyClass whose objecton is a twin of the objecton of MyClass, and

whose type is ‘MyClass’,
2. it (optionally) modifies the current deposit, by changing the values assigned to the attributes of the

new object; to do this it uses a program,

3. it assigns new object to the reference of ide in the deposit of the current store; the objecton of the new

object is a sibling of the objecton of MyClass.

Since we do not want object constructors to have side effects (an engineering decision), we assume that they

get only value parameters.

oco : ObjCon = ActParDen x Identifier ⟼ Store → Store

Since object constructors are regarded as procedures, by an analogy to pre-procedures, we introduce object

pre-constructors with the following domain:

opc : ObjPreCon = Env ⟼ ObjCon

As we see, although the calls of object constructors are instructions, like the calls of imperative procedures,

object constructors themselves are different from imperative procedures.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 118

6.6.5.2 Creating an object pre-constructor

The creator of object pre-constructors given formal parameter denotations, a name of a class and a program

denotation, returns an object pre-constructor. The latter given an environment returns an object constructor,

that given the denotations of actual value parameters, an a name of the future object, and a (call time) store,

returns a new store where the object name points to a new object of the type of the given class. The objecton

of the created object is a sibling of the objecton of the involved class.

create-obj-pre-con : ObjConSigDen x ProDen ⟼ ObjPreCon
create-obj-pre-con : ForParDen x Identifier x ProDen ⟼
 ⟼ Env ⟼ ActParDen x Identifier ⟼ Store → Store
create-obj-pre-con.((fpd, cl-ide), prd).dt-env.(apd, ob-ide,).ct-sto = cl-ide class identifier
 is-error.ct-sto ➔ ct-sto ob-ide object identifier

1. parent class is identified

 let

 (dt-cle, dt-pre, dt-cov) = dt-env declaration-time environment

(ct-obn, ct-dep, ct-ota, ct-sft, 'OK') = ct-sto call-time store

dt-cle.cl-ide = ? ➔ ct-sto ◄ ‘parent class not declared’
ct-obn.ob-ide = ? ➔ ct-sto ◄ ‘object-identifier must be declared’
ct-dep.(ct-obn.ob-ide) = ! ➔ ct-sto ◄ ‘object-identifier must not be initialized’

2. future reference of the constructed object is identified

 let
(tok, (typ, yok, ob-ota)) = ct-obn.ob-ide future reference of the constructed object

(ide, tye, mee, cl-obn) = dt-cle.cl-ide parent class of the future object

not typ TTA.ct-cov cl-ide ➔ ‘types not compatible’

3. formal-parameter store is created

 let
 fp-sto = pass-actual.(fpd, (), apd, (), cl-ide).dt-env.ct-sto formal-parameter store

 is-error.fp-sto ➔ ct-sto ◄ error.fp-sto
 let
 (fp-obn, fp-dep, cl-ide, fp-sft, ‘OK’) = fp-sto
 dom.cl-obn ∩ dom.fp-obn ≠ {} ➔ ct-sto ◄ ‘a clash between parameters and attributes’

4. local initial state is created

 let
 (tw-obn, li-sft) = create-twin.(cl-obn, fp-sft) tw-obn twin objecton

 li-obn = fp-obn ♦ tw-obn
li-sto = (li-obn, fp-dep, cl-ide, li-sft, ‘OK’)
li-sta = (dt-env, li-sto) local-initial state

 prd.li-sta = ? ➔ ?

5. local initial state is transformed into a local terminal state

let
lt-sta = prd.li-sta local terminal state

 is-error.lt-sta ➔ ct-sto ◄ error.lt-sta

6. resulting object and terminal global store are created

let
 (lt-env, (lt-obn, lt-dep, lt-ota, lt-sft, 'OK')) = lt-sta

re-obn = truncate.(lt-obn, dom.cl-obn) resulting objecton

 re-obj = (re-obn, cl-ide) resulting object

 ob-ref = ct-obn.ob-ide future reference of the resulting object

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 119

 tg-dep = ct-dep[ob-ref/re-obj] terminal global deposit

true ➔ (ct-obn, tg-dep, ct-ota, lt-sft, 'OK')

Similarly to the former creators also this one builds a pre-constructor, that given a declaration-time environ-

ment returns a class constructor. The latter, given a call-time store returns this store with a resulting object

bound in it. The resulting object is derived from the objecton of an indicated class, which is built into the pre-

constructor. This action is performed in the following ten steps (we skip commenting errors):

1. A parent class indicated by its name cl-ide is identified.

2. The future reference of the new object is identified. It is the reference of the predeclared object variable

ob-ide. The type of this reference must be compatible with the type of the created object, i.e. with cl-ide.

3. We create a formal-parameter store fp-sto, where only formal value parameters are bound in the objec-

ton. The reference parameters are not involve, and the created store binds only formal value parameters.

4. The creation of a local initial state:

4.1. We create a twin objecton tw-obn of the objecton cl-obn of the parent class.

4.2. We create a local initial objecton li-obn by combining (overwriting) the twin objecton with the ob-

jecton of the formal-parameter store. The only attributes of this objecton are formal parameters and

the attributes of the twin objecton. Note that these two sets of identifiers must be disjoint.

4.3. We create a local initial store by combining the declaration-time environment with the local initial

store. Note that the origin tag of this store is cl-ide.

4.4. Local initial state li-sta is composed of the declaration-time environment, and the local initial store

5. The local initial state is transformed by the program prd to a local-terminal state lt-sta.

6. The creation of the resulting object and terminal global store

6.1. The local terminal objecton is truncated to the attributes of the objecton of the class cl-obn thus giv-

ing a resulting objecton re-obn. This objecton is then used to create the resulting object re-obj by

adding to it its type cl-ide.

6.2. A terminal global deposit of the store is created by binding the created object to its reference ob-ref.

Note that the compatibility of the types of ob-ide and re-obj has been checked in point 2.

6.3. A terminal global deposit tg-dep is created by assigning the created object to ob-ide in the call-time

deposit.

6.4. The terminal global store includes the call-time objecton, the new deposit, the call-time covering re-

lation (an engineering decision), a call-time origin tag, and a local terminal set of free tokens.

Returning to our example of an object constructor ConstructObject of Sec. 5.1, the program involved in the

creation of a new object by this constructor consists of a pair of assignment statements:

no := number + 1;
next := node

where no and next are object’s attributes, and number an node are formal parameters.

6.6.5.3 Calling object constructors

Calls of object constructors are instructions that create new objects and assign them to predeclared variables.

The constructor of such calls takes a name of a class cl-ide where the a constructor has been declared, the

name va-ide of this constructor, an identifier ob-ide to which the new object will be assigned, a list of actual

value parameters, and returns an instruction denotation:

call-obj-con : Identifier x Identifier x Identifier x ActParDen ⟼ InsDen
call-obj-con : Identifier x Identifier x Identifier x ActParDen ⟼ WfState ⟶ WfState
call-obj-con.(ob-ide, cl-ide, va-ide, apd-v).sta =
 is-error.ct-sta ➔ ct-ct-sta
 let

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 120

 ((ct-cle, ct-pre), ct-sto) = ct-sta call-time state

ct-pre.(cl-ide, va-ide) = ? ➔ ct-sta ◄ ‘constructor unknown’
 ct-pre.(cl-ide, va-ide) /: ObjCon ➔ ct-sta ◄ ‘object constructor expected’
 let
 oco = ct-pre.(cl-ide, va-ide)
 oco.(apd-v, ob-ide).ct-sto = ? ➔ ?
 let
 new-sto = oco.(apd-v, ob-ide).ct-sto

 true ➔ (ct-env, new-sto)

The instructions of object-constructor-calls may be said to be “hybrid instruction”, since they are half instruc-

tions and half declarations. They are half declarations because they declare new object variables. However,

structurally they have been included into the domain of instruction, to allow them to be iterated.

6.7 Declarations

6.7.1 An overview of declarations

Declarations in our model may act at two different levels:

1. at the level of states

a. they assign references, classes and procedures to identifiers,

b. they modify covering relations,

2. at the level of classes

a. they assign references, pre-procedures and types to identifiers,

b. they assign values to references in deposits.

The assignment of a reference to an identifier is usually referred to as a variable or an attribute declaration.

The declarations of classes will be executed in two steps:

• the choice of a parent class which may be either empty or previously declared,

• the removal from this class of all object pre-constructors (an engineering decision52) and an enrich-

ment of the resulting class by new items with the help of class transformers.

At the stage of class transformations we may:

• add abstract items,

• concretize abstract items, i.e. replace abstract items by corresponding concrete ones,

• add concrete items.

When we create a new class in a state, we modify the class environment of this state, and additionally, if we

declare a concrete attribute in this class, or if we concretize an abstract attribute, then we modify also the

store of the state by modifying its deposit.

Class transformations are performed by class transformers (Sec. 6.7.4) that modify classes stored in class

environments of states. However, the fact that we have class transformers in our language does not mean that

we can modify declared classes. As we are going to see, class transformers will be used exclusively within

class declarations, which means that classes once declared, will never be changed.

As we have assumed in Sec. 6.3, all declaration in our programs will syntactically precede all instructions.

This rule concerns in particular covering relations, and, in fact, this is why we include them in the category of

declarations rather than instructions. The second reason of this decision is that the modifications of covering

52 It is usual in the existing programming languages that object constructors are not inherited by children classes from
their parent classes. This rule seems rather obvious — when we create an object of a class, we use an object con-
structor of that class.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 121

relations will be restricted to their enrichments by new pairs of types. All these decisions do not affect the

functionality of our programs, but significantly simplify the rules of building correct programs (Sec. 9.4). In

this way we realize the Second Principle of Simplicity formulated in Sec. 3.3.

Now, consider the following example of a class declaration written in an anticipated concrete syntax of

our language (Sec. 7.3):

class MyClass:
 par HisClass by:
 let age be integer and private tel;
 set worker as HisClass.employee and private tes ;
 proc promote(val cfp ref cfp) prc corp
ssalc

This declaration enriches incrementally a previously declared parent class HisClass, by one private integer

attribute age, one type constant worker, whose declaration refers to a class constant of the parent class, and

one imperative procedure (concrete method).

Since the declarations of types and pre-procedures will be hidden in class transformers, formally we are

going to have five categories of atomic declarations with the following constructors:

var-dec : ListOfIde x TypExpDen ⟼ DecDen variable declarations

enrich-cov-rel : TypExpDen x TypExpDen ⟼ DecDen enrichments of cov. rel.

cla-dec : Identifier x ClaInd x ClaTraDen ⟼ DecDen class declarations

pro-open : ⟼ DecDen procedure opening

skip-dec : ⟼ DecDen trivial declaration

Since declarations can be composed sequentially, we introduce also a corresponding constructor:

compose-dec : DecDen x DecDen ⟼ DecDen

We omit obvious definition of the last constructor.

Once all classes have been declared in a program, we perform a one-step operation called the opening of

procedures (Sec. 6.7.6) that creates procedures, functions and object constructors out of the corresponding

pre-procedures, pre-functions and object pre-constructors respectively, and then assigns them to their names

in the procedure environment of the current state.

6.7.2 Declarations of variables

Our variable declarations declare list of variables of a common type and yoke. For the sake of simplicity we

assume that variable declarations do not initialize variables. They only assign references to identifiers. The

initialization of variables must be done by assignment instructions (Sec. 6.4). The definition of our construc-

tor is following (we recall that yoke-expression denotations are just yokes; cf. Sec. 6.4.2):

var-dec : ListOfIde x TypExpDen x YokExpDen ⟼ DecDen i.e.
var-dec : ListOfIde x TypExpDen x YokExpDen ⟼ WfState ⟼ WfState
var-dec.(loi, ted, yok).sta =
 is-error.sta ➔ sta
 loi = () ➔ sta ◄ ‘empty list of variables can’t be declared’
 let
 ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta

(ide-1,…,ide-n) = loi
 ted.sta : Error ➔ sta ◄ ted.sta

declared.ide-i.sta ➔ sta ◄ ‘identifier declared’ for i = 1;n
 let

de-typ = ted.sta declared

type
 (tok-1, sft-1) = get-tok.sft

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 122

 (tok-i, sft-i)) = get-tok.sft(i-1) for i = 2;n
 ref-i = (tok-i, (de-typ, yok, $))
de-typ : ObjTyp and cle.de-typ = ? ➔ ‘class unknown’
true ➔ ((cle, pre, cov), (obn[ide-i/ref-i | i = 1;n], dep, ota, sft-n, ‘OK’))

Note that if we declare an object variable, we check if the corresponding type is a declared name of a class.

This rule is in contrast to the case where we add an abstract object-attribute to a class. In that case, as we are

going to see in Sec. 6.7.4.2, we shall allow that the type of an attribute, i.e. the name of a corresponding class,

may be not (yet) declared. Such a solution is necessary to allow anticipatory referencing in classes.

Another fact to be noted is that variables are always public (an engineering decision), which means that

their origin tags are equal to $.

6.7.3 Declarations of classes — a basic constructor

As has been already said, classes are declared in three steps:

1. In the first step we identify an initial parent class which is either an empty class or an earlier declared

one.

2. In the second step we generate a funding class. If parent class was empty then the funding class is just

this empty class. Otherwise we take a declared earlier parent class and remove from it all types, pre-

procedures and object pre-constructors (an engineering decision). We also replace its name by a new

one. What is inherited by funding class from parent class are, therefore, its attribute and signatures53.

Note, however, that the inheritance of attributes means also the inheritance of their references, and

therefore also values assigned to them in the deposit. On the other hand, as we are going to see later,

the initial values of attributes may be changed at later stages of the declaration execution.

3. In the third step, we apply a class transformer (Sec. 6.7.4) to enrich funding class by new attributes,

types, procedure signatures and pre-procedures.

We recall (Sec. 6.1) that the domain of class-transformer denotations is the following:

ctc : ClaTraDen = Identifier ⟼ WfState → WfState.

Here some methodological remark are in order to explain why class transformers modify states rather than

classes, and why they take an identifier as an argument?

In an earlier version of our model class transformers were functions transforming classes and states, rather

than classes “in states”:

ClaTraDen = (Class x WfState) → (Class x WfState)

The modification of states by class transformers is necessary to describe the initialization of class attributes,

whose values are created by the evaluation of value expressions. From a denotational perspective, this model

worked quite well. Still, as turned out later, it led to technical problems in the definitions of rules for the crea-

tion of correct class declarations (Sec. 9.4.4.2). This example shows that in designing a programming lan-

guage, we should consider not only the simplicity of its denotational model but also an ease of building pro-

gram-construction rules (cf. Sec. 3.3).

Once we have assumed that class transformers will not get “input classes” as their arguments, we had to

indicate these classes in a different way. Class identifiers were an obvious choice to play this role.

In the end, to define our constructor of class-declaration denotations we shall need an auxiliary function to

create funding classes from parent classes:

make-funding-class : ClaInd ⟼ Identifier ⟼ WfState ⟼ Class | Error

53 In typical programming languages (??? Janusza prosimy o przykłady) funding class inherits from parent class all
items except object pre-constructors. However, since in our model we have assumed (cf. Sec. 5.1) that types and
procedures are public, we may access them independently of the class where they have been declared. Making their
copies under different would not have much o a practical sense.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 123

make-funding-class.cli.ide.sta =
 cli = ‘empty-class’ ➔ (ide, [], [], [])
 let

((cle, pre, cov), sto) = sta
 cle.cli = ? ➔ ‘parent class unknown’
 let
 (cl-ide, tye, mee, obn) = cla.cli parent class

 [ide-1/ppr-1,…,ide-n/ppr-n, ide-(n+1)/sig-1,…,ide-(n+k)/sig-k] = mee
 true ➔ (ide, [], [ide-(n+1)/sig-1,…,ide-(n+k)/sig-k], obn

If the class indicator is ‘empty-class’, then the funding class is an empty class with ide as its internal name.

Otherwise the funding class in the class indicated by cli and modified by giving it ide as a new name, remov-

ing all types from its type environment, and removing all pre-procedures from its method environment. The

constructor of class-declaration denotations is now the following:

cla-dec : Identifier x ClaInd x ClaTraDen ⟼ DecDen
cla-dec : Identifier x ClaInd x ClaTraDen ⟼ WfState ⟼ WfState
cla-dec .(de-ide, pa-cli, ctc).sta = de- for “declared”; pa- for “parent”

 is-error.sta ➔ sta
 declared.de-ide.sta ➔ sta ◄ ’identifier already declared’

let
((cle, pre, cov), sto) = sta

 fu-cla = make-funding-class.pa-cli.de-ide.sta funding class

 fu-cla : Error ➔ sta ◄ fu-cla
 let
 fu-sta = ((cle[de-ide/fu-cla], pre, cov), sto) funding state

ctc.de-ide.fu-sta = ? ➔ ?
 let

res-sta = ctc.de-ide.fu-sta resulting state (with an enriched funding class)
is-error.res-sta ➔ sta ◄ error.res-sta
true ➔ res-sta

The declaration of a class starts from making a funding class, and assigning it de-ide to class environment in

an intermediate state called a funding state. This state, hence the funding class in this state, is then modified

by the argument class transformer ctc. Note that the first argument of ctc is de-cla, i.e., the name of the

modified class.

6.7.4 Class transformers

6.7.4.1 The signatures of constructors

Classes are transformed by adding to them new attributes, types or methods. Technically we bind new identi-

fiers in class objectons, in type environments or in method environments. In all cases we have three options:

we can add an abstract item, a concrete item, or we can concretize an abstract item. The last option may be

used when we build a child of an earlier declared class. Finally, class transformers may be composed sequen-

tially.

The domain of class-transformer denotations has been defined in Sec. 6.7.3. The list of constructors of

class-transformer denotations, is the following, where abs means “abstract” and con means “concrete”.

add-abs-att : Identifier x TypExpDen x PriSta ⟼ ClaTraDen
concretize-abs-att : Identifier x ValExpDen ⟼ ClaTraDen
add-con-att : Identifier x ValExpDen x TypExpDen x PriSta ⟼ ClaTraDen

add-abs-typ : Identifier ⟼ ClaTraDen

concretize-typ : Identifier x TypExpDen ⟼ ClaTraDen
add-con-typ : Identifier x TypExpDen ⟼ ClaTraDen

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 124

add-abs-imp-met : Identifier x ImpProSigDen ⟼ ClaTraDen
concretize-imp-met : Identifier x ImpProSigDen x ProDen ⟼ ClaTraDen
add-con-imp-met : Identifier x ImpProSigDen x ProDen ⟼ ClaTraDen

add-abs-fun-met : Identifier x FunProSigDen ⟼ ClaTraDen

concretize-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼ ClaTraDen
add-con-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼ ClaTraDen

add-abs-obj-met : Identifier x ObjConSigDen ⟼ ClaTraDen
concretize-obj-met : Identifier x ObjConSigDen x ProDen ⟼ ClaTraDen

add-con-obj-met : Identifier x ObjConSigDen x ProDen ⟼ ClaTraDen

compose-cla-tra : ClaTraDen x ClaTraDen ⟼ ClaTraDen

In the following sections, we will show some examples of the definitions of these constructors. Each of these

constructors will perform three similar steps:

1. it will identify a class assigned to cl-ide,

2. it will appropriately modify this class,

3. it will assign the new class to cl-ide in the class environment of the current state.

Transformers built by the first fifteen constructors will be called atomic transformers, to contrast them from

composed transformers built by means of compose-cla-tra.

6.7.4.2 Adding an abstract attribute to the objecton of a class

Contrary to variables that are, as a rule, private (Sec. 6.7.2), when we declare a class attribute we have to de-

cide about its visibility status. To incorporate the privacy mechanism into the declarations of class attributes,

we introduce a new domain, and an auxiliary function. The new domain includes two marks defining privacy

status

pst : PriSta = {‘private’, ‘public’}

Adding an abstract attribute to a class consists in adding a new attribute to class objecton. The corresponding

constructor is similar to the declaration of a variable, except that now we decide about the visibility status of

the new attribute. The resulting class transformer enriches a class named cl-ide by a new attribute at-ide.

add-abs-att : Identifier x TypExpDen x YokExpDen x PriSta ⟼ ClaTraDen i.e.
add-abs-att : Identifier x TypExpDen x YokExpDen x PriSta ⟼ Identifier ⟼ WfState → WfState
add-abs-att.(at-ide, ted, yok, pst).cl-ide.sta =
 is-error.sta ➔ sta

 declared.at-ide.sta ➔ sta ◄ ‘attribute already declared’
 ted.sta : Error ➔ sta ◄ ted.sta

let
 ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta
 cle.cl-ide ➔ ‘class unknown’
 let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 de-typ = ted.sta de-typ – declared type

 (tok, new-sft) = get-tok.sft
 ref =
 pst = ‘public’ ➔ (tok, (de-typ, yok, $))
 pst = ‘private’➔ (tok, (de-typ, yok, cl-ide))
 new-cla = (cl-ide, tye, mee, obn[at-ide/ref])
 true ➔ ((cle[cl-ide/new-cla], pre, cov), (obn, dep, ota, new-sft, 'OK'))

Observe that in this definition we use the fact that the input state is well-formed, and therefore the internal

name of a class, here cl-ide, is a component of this class.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 125

Two more facts are to be noted that make abstract attribute declarations different from the declarations of

variables (Sec. 6.7.2):

First, an attribute may be private, in which case its origin tag is equal to the name of the hosting class, ra-

ther than to $.

Second, if the declared type de-typ is an object type, in which case it is supposed to be a name of a class,

we do not check if this is really the case, thus allowing to define abstract object-attributes with an anticipa-

tory referencing to a class that hasn’t been declared yet. This situation is illustrated by two examples written

in Java (Fig. 6.7-1), where — additionally — we have to do with a class recursion.

class ListNode{
 int no = 2;
 ListNode next;
 … }

class A{
 B b;
 void b(B b){
 this.b = b; } }
class B{
 A a = new A(); … }

Case A: simple recursion Case B: mutual recursion

Fig. 6.7-1 Two examples of recursive anticipatory referencing in Java

In Case A class ListNode refers recursively to itself, in Case B class A refers to B, and B refers to A. Note that

if in the second case class B would not refer to class A, then there would be no recursion but still an anticipa-

tory referencing will be the case.

Since classes are regarded as types of objects, a question arises if we should allow anticipatory referencing

between data types as well.

6.7.4.3 Adding a concrete attribute to the objecton of a class

add-con-att : Identifier x ValExpDen x TypExpDen x YokExpDen x PriSta ⟼ ClaTraDen
i.e.

add-con-att : Identifier x ValExpDen x TypExpDen x YokExpDen x PriSta ⟼
⟼ Identifier ⟼ WfState → WfState

add-con-att.(at-ide, ved, ted, yok, pst).cl-ide.sta =
 is-error.sta ➔ sta

 declared.at-ide.sta ➔ sta ◄ ‘attribute already declared’
 ted.sta : Error ➔ sta ◄ ted.sta
 ved.sta = ? ➔ ?
 ved.sta : Error ➔ sta ◄ ved.sta

let
 ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta
 cle.cl-ide ➔ ‘class unknown’
 let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 de-typ = ted.sta de-typ – declared type

 de-val = ved.sta
(tok, new-sft) = get-tok.sft

 ref =
 pst = ‘public’ ➔ (tok, (de-typ, yok, $))
 pst = ‘private’ ➔ (tok, (de-typ, yok, cl-ide))
 new-cla = (cl-ide, tye, mee, obn[at-ide/ref])
 true ➔ ((cle[cl-ide/new-cla], pre, cov), (obn, dep[ref/de-val], ota, new-sft, 'OK'))

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 126

6.7.4.4 Concretizing abstract attributes and adding concrete attributes

Concretizations of an abstract attributes acts as assignments (Sec. 6.5.2) except that the concretized attribute

must be abstract. In other words, we do not allow for a replacement of a value of an attribute by an new one

at the stage of a class declaration (an engineering decision).

Adding a concrete attribute is a simple combination of adding an abstract attribute and concretizing it. We

skip formal definitions of both constructors.

6.7.4.5 Adding a type constant to a class

The case of adding a type constant to a type environment includes three constructors (cf. Sec. 6.7.4.1): adding

an abstract type, concretizing an abstract type and adding a concrete type. In the first case we add a type con-

stant with a pseudotype Θ assigned to it.

add-abs-typ : Identifier ⟼ ClaTraDen
add-abs-typ : Identifier ⟼ Identifier ⟼WfState → WfState
add-abs-typ.ty-ide.cl-ide.sta =
 is-error.sta ➔ sta
 declared.ty-ide.sta ➔ sta ◄ ‘type name declared in state’
 let
 ((cle, pre, cov), sto) = sta
 cle.cl-ide = ? ➔ sta ◄ ‘class unknown’
 let

(cl-ide, tye, mee, obn) = cle.cl-cla
new-cla = (cl-ide, tye[ty-ide/Θ], mee, obn)

 true ➔ ((cle[cl-ide/new-cla], pre, cov), sto)

In the second case we concretize an abstract type:

concretize-typ : Identifier x TypExpDen ⟼ ClaTraDen

concretize-typ : Identifier x TypExpDen ⟼ Identifier ⟼ WfState → WfState
concretize-typ.(ty-ide, ted).cl-ide.sta =
 is-error.sta ➔ sta
 let
 ((cle, pre, cov), sto) = sta
 cle.cl-ide = ? ➔ sta ◄ ‘class unknown’

let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 tye.ty-ide = ? ➔ sta ◄ ‘type name unknown’
 tye.ty-ide ≠ Θ ➔ sta ◄ ‘only abstract types may be concretized’
 ted.sta : Error ➔ sta ◄ ted.sta
 let
 typ = ted.sta

new-cla = (cl-ide, tye[ty-ide/typ], mee, obn)
 typ /: ObjTyp ➔ ((cle[cl-ide/new-cla], pre, cov), sto)
 cle.typ = ? ➔ sta ◄ ‘object type unknown’
 true ➔ ((cle[cl-ide/new-cla], pre, cov), sto)

The following two conditions must be satisfied to concretize a type constant ty-ide:

1. ty-ide must be declared as an abstract type constant; i.e., we can’t change a type assigned to a concrete

type constant, nor we can concretize a not declared constant,

2. if the type to be assigned to ty-ide is an object type, it must be the name of a declared class

The last case is analogous.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 127

6.7.4.6 Adding a method constant to a class

In a method environment of a class we can bind three categories of pre-procedures — imperative and func-

tional pre-procedures, and object pre-constructors — and three corresponding categories of signatures. We

can also concretize abstract methods by completing signatures to pre-procedures. Since all the corresponding

definitions are quite simple and analogous to each other, we show only three examples of such constructors.

We start from introducing an auxiliary function:

get-parameters : ForParDen ⟼ Sub.Identifier

which given a (list of) formal parameters returns the set of identifiers included in these parameters. We skip a

formal definition of this function.

Our first constructor builds the denotation of a declaration of an imperative pre-procedure:

add-con-imp-met : Identifier x ImpProSigDen x ProDen ⟼ ClaTraDen i.e.

add-con-imp-met : Identifier x ForParDen x ForParDen x ProDen ⟼
 ⟼ Identifier → WfState → WfState
add-con-imp-met.(pr-ide, fpd-v, fpd-r, prd).cl-ide.sta =
 is-error.sta ➔ sta
 let
 ((cle, pre, cov), sto) = sta
 (v-ide-1,…, v-ide-n) = get-parameters.fpd-v
 (r-ide-1,…, r-ide-k) = get-parameters.fpd-r
 cle.cl-ide = ? ➔ sta ◄ ‘class unknown’
 declared.pr-ide.sta ➔ sta ◄ ‘identifier not free’
 declared.v-ide-i.sta ➔ sta ◄ ‘identifier not free’ for i = 1;n54
 declared.r-ide-i.sta ➔ sta ◄ ‘identifier not free’ for i = 1;k

let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 let
 ipp = create-imp-pre-pro.(fpd-v, fpd-r, prd, cl-ide)
 new-cla = (ide, tye, mee[pr-ide/ipp], obn)
 true ➔ ((cle[cl-ide/new-cla], pre, cov), sto)

The second constructor corresponds to concretizing a previously declared functional method:

concretize-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼ ClaTraDen

concretize-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼
 ⟼ Identifier → WfState → WfState
concretize-fun-met.(pr-ide, fps, prd, ved).cl-ide.sta =
 is-error.sta ➔ sta
 let
 ((cle, pre, cov), sto) = sta
 cle.cl-ide = ? ➔ sta ◄ ‘class unknown’

let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 mee.pr-ide = ? ➔ sta ◄ ‘method unknown’
 mee.pr-ide /: FunProSigDen ➔ sta ◄ 'signature of functional procedure expected'
 fps ≠ mee.pr-ide ➔ sta ◄ ‘signatures not compatible’
 let
 fpp = create-fun-pre-pro.(fps, prd, ved, cl-ide)
 new-cla = (cl-ide, tye, mee[pr-ide/fpp], obn)
 true ➔ ((cle[cl-ide/new-cla], pre, cov), sto)

54 Denotationally it is not necessary that formal parameters are free, but we take this assumption since it technically
simplifies future rules of correct program development (cf. Sec. 9.4.4.2).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 128

Third constructor corresponds to a declaration of a concrete object constructor.

add-con-obj-met : Identifier x ObjConSigDen x ProDen ⟼ ClaTraDen
add-con-obj-met : Identifier x ForParDen x Identifier x ProDen ⟼
 ⟼ Identifier → WfState → WfState
add-con-obj-met.(oc-ide, fpd, cl-ide, prd).cl-ide.sta = oc- object-constructor

 is-error.sta ➔ sta
 let
 ((cle, pre, cov), sto) = sta
 cle.cl-ide = ? ➔ sta ◄ ‘class unknown’

let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 declared.oc-ide.sta ➔ ‘identifier not free’
 let
 opc = create-obj-pre-con.((fpd, cl-ide), prd)
 new-cla = (cl-ide, tye, mee[oc-ide/opc], obn)
 true ➔ ((cle[cl-ide/new-cla], pre, cov), sto)

6.7.4.7 Composing transformers sequentially

The following constructor simply combines the “declaration layers” of transformers sequentially:

compose-cla-tra : ClaTraDen x ClaTraDen ⟼ ClaTraDen
compose-cla-tra.(cdt-1, cdt-2).ide = (ctr-1.ide) ● (ctr-2.ide)

Intuitively speaking a sequential composition of transformers decribes a process of a cumulative creation of a

class named ide, provided that it is declared in the argument state. In this process a class asigned ot ide (if

any) is modified to a new class by adding to it some new items. Note that this process is possible only

“internally” within a class declaration, since this is the only context in which we can use class transformers. It

can’t be performed “externally” since class transformers do not belong to the category of declarations.

Consequently, a class once declared, can’t be changed in the future.

Note also that compose-cla-tra is associative, since ● is associative.

6.7.5 Enrichments of covering relations

Our last category of declarations are enrichments of covering relations. Although they refer to types, that are

“stored” in classes, the enrichments of covering relations do not transform classes, but environments. This is

an engineering decision which makes covering relations globally accessible.

enrich-cov : TypExpDen x TypExpDen ⟼ DecDen i.e.
enrich-cov : TypExpDen x TypExpDen ⟼ WfState ⟼ WfState
enrich-cov.(ted-1, ted-2).sta =
 is-error.sta ➔ sta
 ted-i.sta : Error ➔ sta ◄ ted-i for i = 1,2
 let
 typ-i = ted-i.sta for i = 1,2

((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta
cov-1 = enrich-cov.(cov, typ-1, typ-2)

 cov-1 : Error ➔ sta ◄ cov-1
typ-1, typ-2 /: ObjTyp ➔ ((cle, pre, cov-1), (obn, dep, ota, sft, ‘OK’))

 true ➔
 let
 ide-i = typ-i for i = 1,2

 cle.ide-i = ? ➔ ‘object types must point to declared classes’ for i = 1,2
 true ➔ ((cle, pre, cov-1), (obn, dep, ota, sft, ‘OK’))

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 129

We recall that enrich-cov (Sec. 5.4.2) realizes the requirement that if one of the types is an object type, then

so must be the other. Additionally our constructor checks if object types point to declared classes.

A word of comment is necessary here to explain why the enrichments of covering relations were included

in the category of declarations rather than instructions. The reason is to ensure that once program execution

passes the declaration part of the program (cf. Sec. 6.3), the covering relation won’t be changed. This as-

sumption simplifies the future rule of creating correct procedure calls (see Sec. 9.4.6.3).

6.7.6 The openings of procedures

As we have assumed in Sec. 6.3 every program in our language is a sequential combination of three compo-

nents:

1. a declaration, possibly composed,

2. a single predefined procedures’ opening,

3. an instruction, also possibly composed

The assumption 2. means that the domain of procedures’ openings includes only one element

pod : ProOpeDen = {open-pro-den}

where

open-pro-den : WfState ⟼ WfState,

and that this element is element is built by a zero-argument constructor

create-open-pro-den : ⟼ ProOpeDen

i.e. it is built by language designer, rather than by programmers, as it is the case with declarations and in-

structions. To incorporate opening declarations into our model, we first introduce an auxiliary function

get-pre-pro : WfState ⟼ (ProIndicator x PrePro)c* get pre-procedures

This function given a state ((cle, pre, cov), sto), returns a sequence of all pairs ((cl-ide, pr-ide), prp)
where:

• pr-ide is a name of a pre-procedure declared in a class named cl-ide,

• prp is the corresponding pre-procedure.

We skip a formal definition of this function, and we assume that the pairs of identifiers (cl-ide, pr-ide) will

be called procedure indicators. Now, a half-formal definition of our constructor is the following:

create-open-pro-den : ⟼ ProOpeDen
create-open-pro-den : ⟼ WfState ⟼ WfState
create-open-pro-den .().dt-sta = dt-sta declaration-time state

 is-error.dt-sta ➔ dt-sta
 get-pre-pro.dt-sta = () ➔ dt-sta ◄ ‘no procedures to declare’
 let
 ((pri-1, prp-1),…,(pri-n, prp-n)) = get-pre-pro.dt-sta

((dt-cle, dt-pre, dt-cov), dt-sto) = dt-sta
 pro-1 = prp-1.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n], dt-cov)
 …
 pro-n = prp-n.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n], dt-cov)
 (dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n]), dt-cov) = ot-env open-time environment

 true ➔ (ot-env, dt-sto)

This constructor given an empty tuple of arguments returns a state-to-state function open-pro-den. This

function gets a declaration-time state dt-sta, and generates a tuple of procedures as a least solution of a set of

fixed-point equations that refer to pre-procedures declared in the classes of dt-sta. These procedures are then

assigned to the corresponding procedure indicators in the declaration-time environment, thus creating an

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 130

open-time environment. This environment together with the declaration-time store, creates an open-time

state.

Note that if we execute a “main program”, i.e., a program which is not a procedure body in a procedure

call, then the declaration-time procedure environment dt-pre is empty.

It is worth observing in this place that in our definition we do not build any stack mechanism usually en-

gaged associated with recursion by interpreters or compilers. We do not need to do so, since we describe the

recursion in Lingua using the recursion in MetaSoft.

Now, let’s try to make the definition of our constructor a little more formal. To do this we first define a

family of metaconstructors MC[n] indexed by positive integers n:

MC[n] : (ProIndicator x PreProc)cn x State ⟼ Procedurecn ⟼ Procedurecn
MC[n].(((pre-1, prp-1),…,(pri-n, prp-n)), sta).(pro-1,…,pro-n) =
 let
 ((cle, pre, cov), sto) = sta
 new-pro-1 = prp-1.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n])
 …
 new-pro-n = prp-n.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n])
 true ➔ (new-pro-1,…,new-pro-n)

Then by

LFP : (A ⟼ A) ⟼ A

we denote a universal function such that if A is a CPO (Sec. 2.4), and if F : A ⟼ A is a continuous function

in this CPO, then LFP.F is the least fixed point of F. With these metafunctions we can write our definition

in the following way:

create-pro-opening : ⟼ DecDen
create-pro-opening : ⟼ WfState ⟼ WfState
create-pro-opening.().dt-sta = dt-sta a declaration-time state

 is-error.dt-sta ➔ dt-sta
 get-pre-pro.dt-sta = () ➔ dt-sta
 let
 ((dt-cle, dt-pre), dt-sto) = dt-sta
 ((pri-1, prp-1),…,(pri-n, prp-n)) = get-pre-pro.dt-sta
 (pro-1,…,pro-n) = LFP.(MC[n].(((pri-1, prp-1),…,(pri-n, prp-n))
 true ➔ ((dt-cle, dt-pre[pri-1/pro-1,…, pri-n/pro-n]),sto)

Of course, Procedurecn is a CPO with a componentwise ordering and Procedure is ordered by a set-

theoretical inclusion of functions. It remains to be proved that

MC[n].(((pri-1, prp-1),…,(pri-n, prp-n)), sta))

is a continuous function in Procedurecn.

For technical reasons we introduce a constructor of a trivial opening, that is an identity function :

open-skip : ⟼ ProOpeDen.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 131

7 SYNTAX AND SEMANTICS

7.1 An overview of syntax derivation

The derivation of a syntax in our model starts from the signature SigAlgDen55 of the algebra of denotations

and proceeds in three steps corresponding to three transformations:

S2A : SigAlgDen ⟼ AlgAbsSyn the creation of an algebra of abstract syntax56

A2C : AlgAbsSyn ⟼ AlgConSyn the transformation of abstract syntax into concrete syntax

C2C : AlgConSyn ⟼ AlgColSyn the transformation of concrete syntax into colloquial syntax

Each of these transformations is a many-sorted function, and A2C is (additionally) a homomorphism. We

build our algebras in such a way that for each of them there exists a corresponding many-sorted function of

semantics:

A2D : AlgAbsSyn ⟼ AlgDen abstract semantics

C2D : AlgConSyn ⟼ AlgDen concrete semantics

SEM : AlgColSyn ⟼ AlgDen colloquial semantics

The first two semantics are homomorphisms, i.e., are denotational semantics, whereas the third one is not.

Since colloquial syntax will be the ultimate user-syntax of our language, its semantics will be called the se-

mantics of Lingua.

All syntactic algebras will be described by corresponding equational grammars (Sec. 2.15). These gram-

mars explicitly define the carriers of our algebras, and implicitly — i.e., by grammatical clauses — their con-

structors. For instance, the following grammatical equation:

cre : ConRefExp =
ref (Identifier) |

 ref ConValExp at Identifier fer

defines the carrier of concrete reference expressions, and each line of this equation below the sign =, called a

grammatical clause, defines a corresponding constructor of the algebra of concrete syntax:

con-ref-variable.ide = ref (ide)
con-ref-attribute.(cve, ide) = ref cve at ide fer

Abstract-syntax grammar is always LL(k) (see Sec. 2.16) which makes abstract-syntax programs easily pars-

able57. The derivation of this grammar can be made algorithmic.

Since abstract syntax is usually awkward to use, in the next step we build an algebra of concrete syntax

which is, by the rule, a homomorphic image of the abstract-syntax algebra:

A2C : AlgAbsSyn ⟼ AlgConSyn

This step is not algorithmic, since here we take major decisions about the future shape of our syntax, and we

try to make it possibly user friendly. In building concrete syntax, we must ensure that the corresponding con-

crete semantics exists. For this to be the case, A2C must be adequate (Sec. 2.14), which means that it must

not glue more than A2D. If it is so, the concrete semantics is unique and satisfies the equation

55 This metavariable is not typeset in bold since a signature of an algebra is not an algebra itself.
56 S2A is read as “signature to abstract”, and the remaining symbols are read analogously.
57 In fact, abstract syntax scripts may be regarded as linear representations of parsing trees.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 132

C2D = A2C-1 ● A2D

where A2C-1 denotes a chosen inverse of A2C, and corresponds to a parsing step from concrete to abstract

syntax. Of course, if A2C is not an isomorphism, then there is more than one parsing procedures “reversing”

A2C, and therefore A2C-1 should be regarded as just one of them.

Although the majority of grammatical clauses of concrete syntax can be made user-friendly, a few of them

may require further modifications. As a rule these modifications are not homomorphic, since, if they were,

they could have been included in A2C. These modifications lead us to a colloquial-syntax grammar, and to

the corresponding algebra. In this case we make sure that there exists a many-sorted function

RES : AlgColSyn ⟼ AlgConSyn

that we call a restoring transformation. It restores colloquial syntax “back to” the concrete one. Now, the

semantics of our language may be regarded as a composition of two many-sorted functions:

SEM = RES ● C2D

This semantics, is no more denotational, since it is not a homomorphism. Still, as we are going to see in Sec.

7.5.1, it may be said to be “denotational to a large extent”.

In the following sections we describe equational grammars of our three syntaxes. For the sake of brevity

we shall not list all clauses of these grammars, but only their typical examples. The used notation has been

described in Sec. 2.15. The components of our many-sorted functions will be indexed by suffixes indicating

the corresponding carriers of algebras. E.g.

A2C.ins : AbsIns ⟼ ConIns

is a component of A2C that corresponds to instructions.

7.2 Abstract syntax

7.2.1 General remarks

As a rule abstract syntax is a prefixed syntax which means that each syntactic element starts from a prefix

that is (not quite formally) an Arial Narrow copy of an Arial metaname of the corresponding constructor of

denotations.

7.2.2 Identifiers, class indicators and privacy statuses

In this category we have three grammatical equations (see Sec. 6.2):

ide : Identifier = …
cli : ClaInd = empty-class | Identifier
pst : PriSta = private | public

7.2.3 Type expressions

ate : AbsTypExp =
ted-create-bo() | ted-create-in.() … |
ted-constant(AbsIdentifier , AbsIdentifier) |

 ted-create-li(AbsTypExp) |
 …

7.2.4 Value expressions

We assume to be given (i.e. somehow defined as parameters of our model) four auxiliary syntactic domains.

We do not call them “abstract syntactic”, since they will be common for all three syntaxes.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 133

BooleanSyn = {true, false}
IntegerSyn = …
RealSyn = …
TextSyn = …

The elements of these domains are symbols or strings of symbols representing corresponding elements of

denotational domains. Examples of syntactic representations of integers or reals may be: 432894713984713847

for an integer or 9874,0951208515584958490 for a real number. The grammatical equation corresponding to

value expression is the following:

ave : AbsValExp =
ved-boo(BooleanSyn) |

 ved-int(IntegerSyn) |
 ved-rea(RealSyn) |
 ved-tex(TextSyn) |
 ved-variable(AbsIdentifier) |
 ved-attribute(AbsValExp , AbsIdentifier) |
 ved-call-fun-pro(AbsIdentifier, AbsIdentifier, ActParAbs) |
 ved-divide-re(AbsValExp , AbsValExp) |

ved-equal(AbsValExp , AbsValExp) |
ved-or(AbsValExp , AbsValExp) |
ved-create-li(AbsValExp) |
ved-get-from-rc(AbsValExp , AbsIdentifier) |
…

7.2.5 Reference expressions

are : AbsRefExp =
ref-variable(Identifier) | a reference of a variable

 ref-attribute(AbsValExp , AbsIdentifier) a reference of an object attribute

7.2.6 Yoke expressions

ate : AbsYokExp =
yo-pass() |
yo-sum-in() |
yo-give-td(AbsValExp) |

 yo-add-in(AbsYokExp , AbsYokExp) |
 …

yo-top(AbsYokExp) |
yo-get-from-ar(AbsValExp) |
yo-get-from-re(AbsYokExp , Identifier) |

yo-equal-in(AbsYokExp , AbsYokExp) |
yo-less-in(AbsYokExp , AbsYokExp) |
yo-no-rep-in(AbsYokExp) |
yo-increasing-in(AbsYokExp) |

yo-true() |
yo-and(AbsYokExp , AbsYokExp) |
yo-or(AbsYokExp , AbsYokExp) |
yo-not(AbsYokExp) |

yok-all-of-li(AbsYokExp) | general quantification

yok-exists-in-li(AbsYokExp) | existential quantification

…

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 134

7.2.7 Instructions

ain : AbsIns =
assign(AbsRefExp , AbsValExp) |
enrich(AbsTypExp , AbsTypExp) |
call-imp-pro(AbsIdentifier , AbsIdentifier , ActParAbs , ActParAbs) |
call-obj-con(AbsIdentifier , AbsIdentifier , ActParAbs) |
skip-ins() |
if(AbsValExp , AbsIns , AbsIns) |
if-error(AbsValExp , AbsIns) |
while(AbsValExp , AbsIns) |
compose-ins(AbsIns , AbsIns)

7.2.8 Declarations

ade : AbsDec =
var-dec(AbsListOfIde , AbsTypExp , AbsYokExp) |
enrich-cov-rel(AbsTypExp , AbsTypExp) |
cla-dec(AbsIdentifier , AbsClaExp , AbsClaTra) |
compose-dec(AbsDec , AbsDec) |
skip-dec()

7.2.9 Openings of procedures

aop : AbsOpePro = create-open-pro()

7.2.10 Class transformers

act : AbsClaTra =
add-abs-att(AbsIdentifier , AbsTypExp , AbsYokExp, PriSta) |
…
add-con-imp-met(AbsIdentifier , AbsImpProSig , AbsPro) |
add-con-fun-met(AbsIdentifier , AbsFunProSig , AbsPro, AbsValExp) |
add-con-obj-con(AbsIdentifier , AbsObjConSig , AbsPro) |
…

compose-cla-tra(AbsClaTra, AbsClaTra)

7.2.11 Preambles of programs

app : AbsProPre =
 make-ppd-of-dcd(AbsDec) |
 make-ppd-of-ind(AbsIns) |
 compose(AbsProPre , AbsProPre)

7.2.12 Programs

apr : AbsPro = make-prog(AbsProPre , AbsOpePro , AbsIns)

7.2.13 Declaration-oriented carriers

ali : AbsLisOfIde =
 build-loi(AbsIdentifier) |

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 135

 add-to-loi(Identifier , ListOfIde)

ads : AbsDecSec =
 build-dse(AbsLisOfIde , AbsTypExp)

afp : AbsForPar =

build-fpd(AbsDecSec) |
add-to-fpd(AbsDecSec , AbsForPar)

aap : AbsActPar =

build-apd(AbsLisOfIde)

Intuitively the last equation means that abstract actual parameters are just list of identifiers. Set-theoretically

we could have dropped the category AbsActPar, and use AbsLisOfIde instead, but algebraically we keep it

formally have the concept of actual parameters in our model.

7.2.14 Signatures

ais : AbsImpProSig =

build-ipsd(AbsForPar , AbsForPar)

afs : AbsFunProSig =

build-fpsd(AbsForPar , AbsTypExp)

aos : AbsObjConSig =

build-ocsd(AbsForPar , AbsIdentifier)

7.3 Concrete syntax

7.3.1 General remarks

In the abstract-to-concrete step, we modify syntax to make it more user-friendly but keep its semantics

denotational. Technically, our modifications will belong to four categories:

1. the simplification of prefixes,

2. the omission of prefixes but keeping parenthesizing,

3. the modifications from prefix to infix notation,

4. the omission of parentheses wherever possible without violating semantics' homomorphicity.

The first three categories include transformations that are isomorphic-like, i.e. unambiguously reversible. The

fourth group makes A2C not isomorphic, but still homomorphic. In this step, we go only as far, as the

adequacy of A2C permits (cf. Sec. 2.14), i.e. we omit parentheses corresponding to sequential composition of

declarations and instructions, but not to arithmetic operations. In this step we sacrify LL(k)-ness for

frendliness.

In the end we have to emphasise that our discussion of the abstract-to-concrete step is very sketchy. We

only try to show a general potential of this step, leaving its further elaboration and analysis to a future

research.

7.3.2 Identifiers, class indicators and privacy statuses

ide : Identifier = …
cli : ClaInd = empty-class | Identifier
pst : PriSta = private | public

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 136

7.3.3 Type expressions

cte : ConTypExp =
boolean | integer … |
constant(Identifier , Identifier) |

 list-of(ConTypExp) |
 …

In the two first clauses we only shorten prefixes, which is an isomorphic-like transformation. In the second

clause we allow writing MyClass.myType instead of ted-constant(MyClass, myType) which is again an isomor-

phic transformation, although now the proof of this fact may be not trivial. Note that a script of the form ide-
1.ide-2 may be a type constant or a value expression, and we have to see the context of this script to identify

which one it is.

7.3.4 Value expressions

We assume to be given the same auxiliary domains as in Sec. 7.2.3. The grammatical equation defining con-

crete value expressions is the following:

cve : ConValExp =
true | false |

 IntegerSyn | syntactic representations of integers

 RealSyn | syntactic representations of reals

 ‘ TextSyn ‘ | texts are closed in apostrophes

 Identifier | variable
 Identifier . Identifier | getting an attribute of an object

 call Identifier.Identifier(ConActPar) | calling an imperative procedure

 (ConValExp /. ConValExp) | real division is a “division with dot /.
 (ConValExp = ConValExp) | equality

 (ConValExp or ConValExp) | disjunction

make list(ConValExp) | making a one-element list
 rec ConValExp at Identifier cer | getting an attribute of a record

…

Here we switch from prefix- to infix notation, but we keep the parentheses structures, although the symbols

of parentheses may change, e.g. from “mathematical” ones like (and) to program oriented like rec and cer.
An example of a clause of the definition of A2C.cve may be:

A2C.cve.[ved-call-fun-pro(aid-c , aid-p , apa)] = -c for “class, -p for “procedure”

call A2C.cid.[aid-c] . A2C.cid.[aid-p] (A2C.apa.[apa])

7.3.5 Reference expressions

cre : ConRefExp =
ref (Identifier) |

 ref ConValExp at Identifier fer

7.3.6 Yoke expressions

cyo : ConYokExp =
 value |
 sum-in |

ConValExp |

 (ConYokExp + ConYokExp) |

 …

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 137

top(ConYokExp) |
array[ConValExp] |
record.Identifier |

(ConYokExp = ConYokExp) |

 (ConYokExp < ConYokExp) |
yo-no-rep-in(ConYokExp) |
yo-increasing-in(ConYokExp) |

TT |
(ConYokExp and ConYokExp) |
(ConYokExp or ConYokExp) |
not(ConYokExp) |

all-in-arr(ConYokExp) |
exists-in-arr(ConYokExp) |
…

Note that the resignation of some prefixes makes our grammar not LL(k). At the same time, however, we

keep parentheses to protect the adequacy of our homomorphism (Sec. 2.14). As we are going to see in Sec.

Sec. 7.4 and 7.5, the omission of some parentheses may lead to a “not quite denotational” semantics.

7.3.7 Instructions

cin : ConIns =
 ConRefExp := ConValExp |

enrich(ConTypExp, ConTypExp) |
call Identifier.Identifier (val ConActPar ref ConActPar) |
new Identifier by Identifier.Identifier (ConActPar) | calls of object constr.

while ConValExp do ConIns od |
if ConValExp then ConIns else ConIns fi |
skip-ins |
ConIns ; ConIns

In the first clause we changed prefix notation to infix notation, and we skipped parentheses. The latter trans-

formation is not harmful for the adequacy of the homomorphism, since — intuitively — assignment instruc-

tions will be always closed by the parentheses of “other structures” such as ;, do, then, etc. A formal proof

should be carried by induction on the structure of our grammar.

In the last clause we have also skipped parentheses, but in this case to prove that such a transformation

does not destroy the adequacy of our homomorphism we have to use the fact that the sequential composition

of functions is associative, and refer to Theorem 2.14-1 in Sec 2.14.

7.3.8 Declarations

cde : ConDec =
let ConLisOfIde be ConTypExp with ConYokExp tel |
enrich-cov(ConTypExp, ConTypExp) |
class Identifier parent ConClaExp with ConClaTra ssalc |
skip-dec |
ConDec ; ConDec

Similar comments, as in Sec. 7.3.7, apply here to the last clause.

7.3.9 Openings of procedures

cpo : ConProOpe = open procedures

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 138

7.3.10 Class transformers

cct : ConClaTra =
let Identifier be ConTypExp with ConYokExp as PriSta tel | add abs. attribute

…

set Identifier be ConTypExp tes | add con. typ const.

proc Identifier (ConImpProSig) begin ConPro end |
fun Identifier (ConFunProSig) begin ConPro return ConValExp end |
obj Identifier (ConObjConSig) begin ConPro end |
…
ConClaTra ; ConClaTra |
skip-ctr

The following component of procedure declaration:

Identifier (ConImpProSig)

will be called a procedure header.

7.3.11 Preambles of programs

cpp ConProPre =
 ConDec |
 ConIns |
 ConProPre ; ConProPre

7.3.12 Programs

cpr : ConPro = ConProPre ; open procedures ; ConIns

Here we may safely drop parentheses since they are the outermost parentheses in a program, and therefore

their removal do not destroy isomorphicity.

7.3.13 Declaration-oriented carriers

cli : ConLisOfIde =
 Identifier |
 Identifier , ConLisOfIde

cds : ConDecSec =
 ConLisOfIde as ConTypExp

cfp : ConForPar =

ConDecSec |
ConDecSec , ConForPar

cap : ConActPar =

ConLisOfIde

See a comment about the last equation in Sec. 7.2.13.

7.3.14 Signatures

cis : ConImpProSig = val ConForPar ref ConForPar
cfs : ConFunProSig = val ConForPar ret ConTypExp
col : ConObjConSig = val ConForPar ret Identifier

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 139

An example of a concrete imperative-procedure declaration may be the following

proc compute (val x, y as integer, z as real,
ref p, r as integer)
begin

cpr
end

where cpr is a concrete program.

7.4 Colloquial syntax

Colloquial syntax is, as a rule, THE syntax of our language, i.e., the syntax to be used by programmers. Con-

sequently the metavariables (non-terminals) of colloquial syntax will not be prefixed by Col. E.g., instead of

writing ColValExp we shall write just ValExp.

In our language we introduce two categories of colloquialisms: the omission of parentheses in arithmetic

and boolean expression, and the creation of a new constructor of attribute declarations.

The omission of parentheses in arithmetic and boolean expressions concerns value expressions and yokes.

Formally this means that in a concrete-to-colloquial step to every parenthesized colloquial clause such as,

e.g.,

(ValExp +. ValExp)

 we add a corresponding parentheses-free clause

ValExp +. ValExp

Consequently the grammatical equation for colloquial value-expressions will look as follows:

vex : ValExp =
true | false |

 IntegerSyn |
 RealSyn |
 ‘ TextSyn ‘ |
 Identifier |
 obj ValExp at Identifier jbo |
 call Identifier.Identifier(ActPar) |
 (ValExp /. ValExp) |
 ValExp /. ValExp | new clause (without parentheses)
 …

In colloquial syntax parentheses are optional — we may use them or not. The signature of the algebra of col-

loquial syntax is, therefore, an extension of the signature of concrete syntax by constructors building paren-

theses-free expressions.

The corresponding restoring transformation for arithmetic expressions adds parentheses according to the

rule that multiplication and division bind stronger than addition and subtraction, and the “remaining” paren-

theses are added from left to write. E.g., the colloquial expression:

a + b*c – e*f

will be restored to

((a + (b*c)) – (e*f)).

7.4.1 New constructor of attribute declarations

In the repertuar of class transformers (Sec. 6.7.4) we have only one constructor that concerns attributes,

namly the declaration of an abstract attribute. Since the concretization of an abstract attribute may be realized

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 140

by an assignment instruction, we have not introduced at this level a constructopr that adds a concrete

attribute. Now, to allow programmers to declare a concrete attribute in one step, e.g. :

let abscissa = 2,15 be real and public tel

we introduce the following colloquial-grammar clause :

let Identifier = ValExp be TypExp and PriSta tel

and we assume that such colloquial declarations are restored to the following concrete forms

let Identifier be TypExp and PriSta tel;
Identifier := ValExp

Of course, we could have introduced this constructors at the level of denotations, but instead we decided to

do it at the level of colloquial syntax just to show that at the level of denotations we do not necessarily need

to care about the future colloquial syntax. When we design a programming language we may take our deci-

sions about syntax as late as possible.

7.4.2 The list of colloquial domains

Since we are going to use our colloquial syntax in the investigations about validating programming in Sec. 9,

we list below all colloquial-syntax domains and their corresponding metavariables. Since colloquial syntax is

the ultimate syntax of the user, we do not prefix the names of colloquial domains with Col, analogously to

Abs and Con. E.g. instead of talking about “colloquial expressions” we shall talk about “expressions”.

ide : Identifier — identifiers

cli : ClaInd — class indicators
pst : PriSta — privacy statuses
tex : TypExp — type expressions

yex : YokExp — yoke expressions

vex : ValExp — value expressions

rex : RefExp — reference expressions

ins : Instruction — instructions
dec : Declaration — declarations

opp : OpePro — the opening of procedures

ctr : ClaTra — class transformers

ppr : ProPre — program preambles

prg : Program — programs

loi : LisOfIde — lists of identifiers

des : DecSec — declaration sections

fpa : ForPar — formal parameters

apa : ActPar — actual parameters

ips : ImpProSig — imperative-procedure signatures

fps : FunProSig — functional-procedure signatures

ocs : ObjConSig — object-constructor signatures

7.5 Semantics

7.5.1 The ultimate semantics of Lingua

Since in our model colloquial syntax is assumed to be the user’s “ultimate” syntax, its semantics:

SEM : AlgColSyn ⟼ AlgDen

will be called just the semantics of Lingua. It is not a homomorphism, and symbolically may be written as a

composition of three many-sorted mappings

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 141

SEM = RES ● A2C-1 ● A2D

where:

• RES is a restoring transformation from colloquial syntax to concrete syntax,

• A2C-1 is a chosen invers of A2C and represents a parsing step,

• A2D is a homomorphism which constitutes the semantics of abstract syntax.

It is to be emphasized in this place that whereas the choice of A2C-1 is irrelevant for SEM, the choice of

RES defines the way in which we understand colloquial syntax.

Let us start the process of building the definition of semantics from the definition of A2D. This is an easy

step, since the grammar of abstract syntax is unambiguous. In this step for each syntactic category, i.e., for

each carrier of the algebra of abstract syntax, we create one definitional equation with several semantical

clauses. E.g., for the category of programs the equation includes only one clause, and is the following:

A2Dapr.[apr] =
 apr :: make-prog(ade , create-pro-opening() , ain) ➔

make-prog.(A2D.ade.[ade], create-pro-opening(), A2D.ain.[ain]

In the first line of this definition, the first apr is an index, and the apr in square brackets is a metavariable

running over AbsPro.

The second and the third line constitute together one semantical clause. The symbol :: denotes (not quite

formally) a pattern matching operator, and expresses the fact that apr is parsable to the form make-prog(ade ,
create-pro-opening() , ain). Since our grammar is unambiguous, this parsing is unique.

The constructor of denotations make-prog is the semantic counterpart of the prefix make-prog. This con-

structor is applied to the denotations of the components of the program, which expresses the compositionality

(denotationality) of the semantics or abstract syntax. Another typical example, which this time concerns in-

structions, is the following:

A2Dain.[ain] =
ain :: assign(are , ave) ➔

assign.(A2Dare.[are], A2Dave.[ave])
ain :: call-imp-pro(aid-1.aid-2 , apa-1 , apa-2) ➔

call-imp-pro.(A2Daid.[aid-1] , A2Daid.[aid-2] , A2Dapa.[apa-1] , A2Dapa.[apa-2])
 …

ain :: seq-ins(ain-1 , ain-2) ➔
seq-ins.(A2Dain.[ain-1], A2Dain.[ain-2])

Now, let’s pass to the definition of A2C-1. Since A2C is not an isomorphism, we have to choose one of alter-

native parsing strategies, but since it is adequate, this choice is irrelevant for the “meaning” of C2D. Note

also that A2C introduces only “three ambiguities”, namely the omissions of parentheses in three grammatical

concrete clauses:

(ConIns ; ConIns)
(ConDec ; ConDec)
(ConClaTra ; ConClaTra)

Since these cases are similar to each other, let’s analyze the case of instructions. To define a chosen parsing

strategy — let’s call it C2A — we introduce an auxiliary subdomain of instructions called atomic instruc-

tions:

atin : AtomIns =
 ConRefExp := ConValExp |

call Identifier.Identifier (val ConActPar ref ConActPar) |
new Identifier by Identifier.Identifier (ConActPar) |

while ConValExp do ConIns od |
if ConValExp then ConIns else ConIns fi |
skip-ins

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 142

It is now easy to prove (by induction) that every concrete non-atomic instruction is unambiguously parsable

into an instruction of the form:

atin ; cin,

where cin may, of course, include some nonatomic instructions.

We emphasize that AtomIns is not regarded as a new carrier of the algebra of concrete syntax, but as an

auxiliary domain “outside” of this algebra. We may say that we do not modify the algebra of concrete syntax,

but we build an auxiliary one, to be used only for the purpose of parsing58.

Now, the definition of C2A.cin may be written as follows

C2Acin.[cin] =

cin :: cre := cve ➔
 assign(C2Acre.[cre] , C2Acve.[cve])

cin :: call cid-c.cid-p (val cap-v ref cap-r) ➔
 call-imp-pro(C2Acid.[cid-c] , C2Acid.[cid-p] , C2Acap.[cap-v] , C2Acap.[cap-r])

 …
cin :: atin ; cin ➔ seq-ins(C2Acin.[atin] , C2Acin.[cin])

From this definition, the definition of A2D, and the equation

C2D = C2A ● A2D (7.5-1)

we can algorithmically generate the following equation of the definition of C2D:

C2Dcin.[cin] = (7.5-2)
 cin :: cre := cve ➔

assign.(C2Dcre.[cre], C2Dcve.[cve])

 cin :: call cid-1.cid-2 (val cap-1 ref cap-2) ➔
 call-imp-pro.(C2Dcid.[cid-1] , C2Dcid.[cid-2] , C2Dcap.[cap-1] , A2Dcap.[cap-2])
 …
 cin :: atin ; cin ➔

seq-ins.(C2Dcin.[atin], C2Dcin.[cin])

Let’s see how it works for the first clause:

C2Dcin.[cre := cve] = by (7.5-1)
A2Dain.[C2Aain.[cre := cve]] = by isomorphicity of C2A
A2Dain.[assign(C2Acre.[cre] , C2Acve.[cve])] = by homomorphicity of A2D
assign.(A2Dare.[C2Acre.[cre]], A2Dave.[C2Acve.[cve]]) = by (7.5-1)
assign.(C2Dcre.[cre], C2Dcve.[cve])

In the second transformation we use the fact that in the case of assignments, A2Cain hence also C2Acin, are

reversible, i.e. “locally isomorphic”.

Let us pass now to the restoring function RES. Similarly as C2A, also RES adds parentheses, but now,

the way it does it makes difference for the meaning of expressions. E.g., if we decide to add the “missing”

parentheses to

a + b * c + (d – e) * f

in assuming that multiplication bind stronger than addition, and besides we add them from left to right:

((a + (b * c)) + ((d – e)*f))

58 Of course, we could have introduced an analogous construction already on the level of the algebra of denotations.
We didn’t do so, since in our method, we want to sharply distinguish between the stages of building denotations and
of building syntax. In our opinion a language designer should not think of syntax, when designing the core of the lan-
guage represented by denotations.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 143

then we decide not only about the functioning of a parser, but also about the meaning of the expression.

We shall not go into the technical details of a definition of RES assuming that it has been somehow (cho-

sen and) defined. Let us think, therefore, about the definition of SEM, which is a composition of RES with

the semantics of concrete syntax:

SEM = RES ● C2D

The definition of this semantics may be created algorithmically from the definition of C2D. Let’s show it on

the example of equation (7.5-2). Its colloquial counterpart will be the following:

SEMins.[ins] =
 RES.ins :: cre := cve ➔

assign.(C2Dcre.[cre], C2Dcve.[cve])

 RES.ins :: call cid-1.cid-2 (val cap-1 ref cap-2) ➔
 call-imp-pro.(C2Dcid.[cid-1] , C2Dcid.[cid-2] , C2Dcap.[cap-1] , A2Dcap.[cap-2])
 …
 RES.ins :: atin ; cin ➔

seq-ins.(C2Dcin.[atin], C2Dcin[cin])

In this definition we first restore a colloquial instruction ins into a corresponding concrete one RES.ins, and

then we parse it to apply C2D cin. Note that C2Dcin also adds some parentheses (to instructions) by using

C2A.

7.5.2 Why do we need a denotational semantics?

A denotational semantics of a programming languages constitutes a fundament for the realization of at least

three goals:

1. to build an implementations of the language, i.e. an interpreter or compiler,

2. to write a concise, complete and consistent user manual,

3. to establish constructors of functionally correct programs.

Regarding the first goal, the definitional clauses of a denotational semantics may be regarded as procedures

of an interpreter. They mutually call themselves, and call also constructors of denotation. As such they

should be easily implementable. They also indicate a systematic way to the development of a compiler.

A denotational semantics is also an adequate starting point for writing a user manual. Even if a user is not

prepared to read, and understand denotational equations, these equations constitute guidelines for an author

of a manual. Translated into intuitive explanations — as we did in Sec. 6 — result with a manual that is con-

sistent, complete and concise at the same time. An experiment of writing a manual in this way has been de-

scribed in .

One of the well-known nightmares of manual reader is that manual usually don’t keep up with the updates

of implementations. The existence of a mathematical semantics of a language which should be conformant

with both, the implementation and the manual, helps in keeping the adequacy of manuals.

It is also to be mentions in this place that although a denotational semantics needs not be a core of a man-

ual, it should be contained in it as a standard to be referred to in cases of doubts. In such cases it may be prac-

tical to write semantic clauses in an unfolded form. E.g. instead or writing:

SEM.ins.[rex := vex] =
 assign.(SEM.rex.[rex], SEM.vex.[vex]

we may prefer to write

SEM.ins.[rex := vex].sta =
 is-error.sta ➔ error.sta
 let
 red = SEM.rex.[rex]

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 144

 ved = SEM.vex.[vex]
 ved.sta = ? ➔ ?

ved.sta : Error ➔ sta ◄ ved.sta
red.sta : Error ➔ sta ◄ red.sta

 let
 val = ved.sta
 ref = red.sta
 (tok, (typ, yok, re-ota)) = ref

(env, (obn, dep, st-ota, sft, ‘OK’)) = sta
 re-ota ≠ $ and re-ota ≠ st-ota ➔ ‘reference not visible’
 not ref VRA.cov val ➔ ‘incompatibility of types’
 true ➔ (env, (obn, dep[ref/val], cov, st-ota, sft, 'OK'))

Whereas implementations and manuals may be created without a mathematical semantics — which, unfortu-

nately, is a fairly common practice — it is hard to expect that we could create (mathematically) sound pro-

gram construction rules without it. How to do when we have such semantics, we explain in Sec. 9.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 145

8 SEMANTIC CORRECTNESS OF PROGRAMS

8.1 Historical remarks

Semantic correctness of programs, historically called program correctness, was a subject of investigations

from the very beginning of the computer era. The earliest paper in this field — today practically forgotten —

has been published by a British mathematician, Alan Turing59, in 1949 [87]. Nearly twenty years later, in

1967, the same ideas were investigated again by an American scientist, Richard Floyd [53]. In 1978, the As-

sociation for Computing Machinery established the annual Turing Price “for outstanding achievements in

informatics”. One of the first winners of that price in 1978 was… Richard Floyd.

As far as we know, it has never been established if Floyd knew Turing’s work. In the 1980-ties, A. Blikle

wrote to Cambridge University on that issue. The only answer he received was substantial advice: do not try

to build “yet another myth about Turing”.

The work of Floyd introduced a fundamental concept of an invariant of a program and was dedicated to

programs represented by graphical forms called flow-diagrams or frow-charts. In 1969, a British scientist,

C.A.R Hoare (also a Turing Price winner), published a paper [61] concerning Floyd’s ideas applied to struc-

tural programs, i.e., programs constructed with the help of sequential composition, if-then-else branching,

and while loops. The works of C.A.R. Hoare and his followers, called Hoare’s logic, were later summarised

in two extensive monographs by K. Apt [4] and by K. Apt and H.R. Olderog [5].

The correctness of programs investigated by C.A.R. Hoare was later called partial correctness. A program

is partially correct for a precondition prc and a postcondition poc if whenever prc is satisfied by an input

state, and the execution of this program terminates, then the terminal state satisfies prc.

An alternative, or better a strengthening, of partial correctness is total correctness, introduced by E. W.

Dijkstra in [50] and then investigated in detail in [51]. In this case, correctness means that the satisfaction of

a precondition guarantees that the program terminates and satisfies the postcondition at the end.

Research devoted to program correctness was also developed in Poland. The first paper on that subject

(although in an approach different from Hoare’s) was published in 1971 by A. Mazurkiewicz [71]. A year

later, during the first conference in a series of conferences on Mathematical Foundations of Computer Sci-

ence60, A. Blikle and A. Mazurkiewicz presented a joint paper [37] on program correctness based on an alge-

bra of binary relations and covering recursive programs with nondeterminism. Nearly ten years later,

A.Blikle published a paper [28] with a complete model of so-called clean total correctness for programs cor-

responding to arbitrary flow diagrams but without procedures. Blikle’s correctness means that a correct pro-

gram not only does not loop but also does not abort. This approach also gave rise to using three-valued predi-

cates when talking about program correctness.

59 Alan Turing (1912-1954) was one of the creators of the theory of computability. His model known today as Turing
machine is regarded as one of fundamental concepts of this theory. Due to his work "On Computable Numbers, With
an Application to the Entscheidungsproblem" Turing was considered as one of the greatest mathematicians of the
world. Unfortunately he was also subject to a homophobic discrimination. When in 1952 police has learned about his
homosexuality he was forced to choose between prison or hormonal therapy. He has chosen the latter but committed
a suicide.

60 This conference was organized in 1972 by a group of young researchers form the Institute of Computer Science of
the Polish Academy of Sciences and the Department of Mathematics and Mechanics of Warsaw’s University. Next
year a similar conference was organized in Czechoslovakia witch gave rise to a long series of MFCS conferences.
Since 1974 proceedings of these conferences were published by Springer Verlag in the series Lecture Notes in
Computer Science.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 146

In this place, we should also mention two fields of research developed at Warsaw University. The first

was a formalized approach to program correctness based on algorithmic logic [10], where programs appear in

logical formulas. The second [69] was much more engineering-oriented and split into three areas: grammati-

cal deduction, performance analysis of computing systems, and formal specification of software require-

ments. An interesting application of the second approach is described in a paper by D.L. Parnas, G.J.K. As-

mis, and J. Madey [79] devoted to software safety assessment for a Darlington Nuclear Power Generating

Station (Canada) shutdown system.

Despite its undoubted scientific importance, the idea of proving programs correct was never widely ap-

plied in software engineering. In our opinion, this situation was due to the implicit assumption that programs

come first and their proofs are built later. This order is natural in mathematics, where a theorem precedes its

proof, but is somewhat unusual in engineering. Imagine an engineer who first constructs a bridge and only

later performs all the necessary calculations. Such a bridge would probably collapse before its construction

was completed, and in fact, this is what unavoidably happens with programs. The first version of a code usu-

ally does not work as expected. Consequently, a large part of the program-development budget is spent on

testing and “debugging”, i.e., on removing bugs introduced at the stage of writing the code. It is a well-

known fact that all bugs can never be identified and removed by testing. Therefore, the remaining bugs are

removed at the user’s expense under the name of “maintenance”. This process practically never terminates.

In this place, it is worth quoting a remark of Edsger W. Dijkstra that he called a “sad remark” 61:

Since then we have witnessed the proliferation of baroque, ill-defined and, therefore, unstable soft-

ware systems. Instead of working with a formal tool, which their task requires, many programmers

now live in a limbo of folklore, in a vague and slippery world, in which they are never quite sure

what the system will do to their programs. Under such regretful circumstances the whole notion of a

correct program — let alone a program that has been proved to be correct — becomes void. What the

proliferation of such systems has done to the morale of the computing community is more than we can

describe.

Even though these words were written nearly half a century ago, and during this time, the reliability of

hardware and the applicability of IT has increased by several orders of magnitude, the problems pointed out

by E.W. Dijkstra are still there.

In this book (Sec. 8 and Sec. 9), we are trying to develop ideas sketched earlier by A. Blikle in [25] and

[27], where instead of proving programs correct, a programmer develops programs using rules that guarantee

program correctness. In such a framework, a software engineer works as an engineer who builds bridges,

cars, or airplanes, and where products are created from correct components by using rules that guarantee the

correctness of the result.

Since the rules for developing correct programs are derived from the rules of proving programs correct,

we shall start with the latter. The discussion will be based on an algebra of binary relations since this leads to

a relatively simple model where many technicalities of programming languages can be hidden. Of course, to

apply these rules in a practical environment, they have to be expressed on the grounds of a mathematical

model of a programming language. A language Lingua-V (V for “validation”) with such a model is

described in Sec. 9.

8.2 A relational model of nondeterministic programs

Each program, and each of its imperative components, defines an input-output relation (I-O relation) between

its input states, and the corresponding output states. Of course, in a deterministic case, this relation is a func-

tion. Although programs in Lingua are deterministic, the discussion of a (possibly) non-deterministic case

seems worthwhile, especially since it does not complicate the model.

61 In [51] published in 1976 page 202.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 147

Let S be an arbitrary, possibly infinite, set of elements called states. In Lingua, states are fairly complex

items but in the abstract case, we do not need to assume anything about them. In the relational model pro-

grams are represented by binary relations over S, i.e., elements of the set:

Rel(S, S) = {R | R ⊆ S x S}

The fact that

a R b for a, b : S

means that there exists an execution of program R that starts in a and terminates in b.

In a non-deterministic case, there may be more than one execution that starts in a. Some may terminate with

another state, say c (Case 1 of Fig. 8.2-1), some others may be infinite (Case 2 of Fig. 8.2-1). In our model,

the difference between Case 1 and Case 2 cannot be expressed. In both cases, we can only say that

a R b and a R c.

Note that due to the use of states which may carry errors, abortion of a computation from a to b means that b

carries an error. This also means that if R is a function than the non-existence of a state b such that a R b

means that a starts an infinite execution.

If we want to deal with infinite executions explicitly, we need a different concept of program denotations.

Two such models were analyzed in [23]. One uses so-called δ-relations, where a R δ means that there exists

an infinite computation that starts in a62. In this model, however, we cannot describe the fact that there are

two or more different infinite computations that start from the same state. Such issues can be handled on the

ground of the second model, where program denotations are sets of finite or infinite sequences of states

called bundles of computations. Both approaches can be used in building denotational models of program-

ming languages.

8.3 Iterative programs

In “prehistoric” informatics of the years 1940/1950, programs were written as lists of labeled instructions

executed sequentially one after another unless a jump instruction goto interrupted that flow. With jump in-

structions one can build an arbitrary graph of elementary instructions called a flow-diagram. Early papers on

program correctness were devoted to such programs later called iterative programs.

62 In this model each δ-relation is a union of three set of pairs R ⊆ S x S, D ⊆ S x {δ} and {(δ, δ)}, where S and D may
be empty.

Fig. 8.2-1 Two nondeterministic cases

a

b

c

Case 1 Case 2

a

b

c

∞

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 148

A general relational model of an iterative program is the following fixed-point set of so called left-linear

equations63:

X1 = R11 X1 | … | R1n Xn | E1n

… (8.3-1)

Xn = Rn1 X1 | … | Rnn Xn | Enn

that corresponds to a graph whose nodes are numbers 1,…,n, each relation Rij labelles a unique edge between

i and j, and each Ein (exit relation) is a “dangling edge” that start on i, but does not point to any other node.

The code of such a program may be written as an arbitrarily ordered64 sequences of labelled instructions of

the form:

i : do Rij goto j and

i : do Ein.

If there is no instruction between i and j, then the relation Rij is empty which means that there are no execu-

tions between i and j. Since the atomic instructions Rij and Ein are not necessarily functions, such a program

may have a non-deterministic character. For (8.3-1) to be deterministic, two conditions must be satisfied:

• all Rij and Ein must be functions,

• for every i, all Ri1,…,Rin and Ein must have disjoint domains.

As has been proved in [28], if (P1,…,Pn) is the least solution of (8.3-1), then Pi is the input-output relation of

the path from node i to node n. Therefore, if we assume that 1 represents the initial node, and n is the final

node, then P1 is the input-output relation (the denotation) of our program. The class of iterative programs

understood in that way, together with their correctness-proof rules, were investigated in [23] and [28]. It is

worth mentioning in this place that Pi’s correspond to A. Mazurkiewicz tail functions [71] or D. Scott and

Ch. Strachey continuations [84]. Both these models were published in 1971.

Programmers of the decade 1950/1960 were competing with each other in building more and more com-

plicated flowchart programs that usually nobody except them was able to understand. Unfortunately, quite

frequently, the authors themselves were not able to predict the behavior of such programs.

As a reaction to these problems, first algorithmic programming languages such as Fortran and Algol-60

were created. They were offering tools for structural programming such as sequential composition, if-then-
else, and while65. Such programs were much easier to understand and also allowed for significant simplifica-

tion of program-correctness proof rules.

In the sequel, we shall restrict our discussion to only three primary structural constructors since they al-

low for the implementation of any “implementable” function66:

1. sequential constructor denoted by a semicolon “;”,

2. conditional constructor if-then-else-fi,
3. loop constructor while-do-od.

The sequential composition is the composition of relations (functions) as defined in Sec. 2.7. To define the

remaining constructors, we have to introduce additional concepts. Since in our case the denotations of boole-

an expressions are three-valued partial functions, each of them will be represented by two disjoint set of

states:

63 They are called so because coefficients of variables Xi stand on their left-hand side. A symmetric model of right-
linear equations of the general form X = XR | Q has been analysed in [19].

64 The execution of such a program does not depend on the order of its instructions since every instruction points to the
instruction which should be executed as the next one.

65 The author who introduced the term “structured programming” was a Dutch computer scientist Edsger Dijkstra (see
[50] and [51]).

66 Precisely speaking, any “computable” function. This claim has been known as Church’s thesis. A formal proof of this
thesis in shown in [18], and is based on a simple programming language with a (sort of) denotational semantics.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 149

 C = {s | p.s = tt}

 ¬C = {s | p.s = ff}

Of course, if p is a two-valued total predicate, then C | ¬C = S, and therefore only one set is necessary to

represent it. Notice also that our model does not distinguish between the two cases:

p.s : Error

p.s = ?

In both of them s : S – (C | ¬C). If we want to distinguish between these cased, we have to represent predi-

cates by three disjoint sets:

 C = {s | p.s = tt}

 ¬C = {s | p.s = ff}

 eC = {s | p.s : Error}

where S – (C | ¬C | eC) includes states initiating infinite executions of p. We are not going to do so, since

in constructing correct programs we equally care about the avoidance of abortion and of infinite computa-

tions. Therefore we can identify these two cases in our model. Of course, in the denotational model of Lin-

gua the abortion was distinguished from infinite looping, because the detection of te latter is not computable.

It may be interesting to see, how on the ground of our relational model, we can express the difference be-

tween McCarthy’s and Kleene’s operators of propositional calculus. E.g.

(A, ¬A) and-mc (B, ¬B) = (A ∩ B, ¬A | A ∩ ¬B) — McCarthy

(A, ¬A) and-kl (B, ¬B) = (A ∩ B, ¬A | ¬B) — Kleene

Now, let P and Q represent arbitrary programs and a pair of disjoint sets of states (C,¬C) ― an arbitrary

three-valued partial predicate. Our three structural constructors may be defined as particular cases of the uni-

versal set of equations (8.3-1). We recall (Sec. 2.7) that for any set of states A

[A] = {(a, a) | a : A}

is a subset of an identity relation (function). Now, the equational definitions of structural constructors are the

following:

Sequential composition — P ; Q

X = P Y
Y = Q

Therefore by Theorem 2.4-2:

X = P Q

Conditional composition — if (C,¬C) then P else Q fi

X = [C] Y | [¬C] Z
Y = P
Z = Q

where [C] and [¬C] are identity functions. Therefore by Theorem 2.4-2::

X = [C] P | [¬C] Q

Loop — while (C,¬C) do P od

X = [C] P X | [¬C]

As is easy to prove in this case

X = ([C] P)* [¬C]

Summarizing our definitions:

P ; Q = P Q

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 150

if (C,¬C) then P else Q fi = [C] P | [¬C] Q
while (C,¬C) do P od = ([C] P)* [¬C]

At the end one methodological remark is necessary. Although in Lingua all programs are deterministic,

hence correspond to functions rather than relations, in the relational theory of program correctness we shall

mainly talk about arbitrary relations (with an exception of while loops), since in these cases nondeterminism

does not lead to more complicated proof rules.

8.4 Procedures and recursion

The next step towards the development of structural-programming techniques was the introduction of proce-

dures and, in particular — recursive procedures. On the ground of the algebra of relations mutually recursive

procedures may be regarded as components of a vector of relations (R1,…,Rn) which is the least solution of a

set of fixed-point polynomial equations of the form:

X1 = Ψ1.(X1,…,Xn)

…

Xn = Ψn.(X1,…,Xn)

In these equations, each Ψi(X1,…,Xn) is a polynomial, i.e., a combination of variables, say X, with constants,

say A, B, C, by composition and union, e.g., AXYB | XXC. Such sets of equations may be regarded as single

fixed-point equations in a CPO of relational vectors ordered component-wise, i.e., in the CPO over the carri-

er:

Rel(S,S)cn = {(R1,…,Rn) | Ri : Rel(S,S)}

Every such set of polynomial equations defines a vectorial function:

Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn

Ψ.(R1,…,Rn) = (Ψ1.(R1,…,Rn),…, Ψn.(R1,…,Rn))

If each Ψi is continuous in all its variables, then Ψ is continuous as well, and therefore Kleene’s theorem

holds (Sec. 2.4).

Since the correctness problem for recursive procedures is much more complicated than in the iterative

case (see [5]), we shall investigate in Sec. 8.6.2 and Sec. 8.7.2 a simple scheme of a recursive procedure with

only one procedural call that corresponds to an equation of the form:

X = HXT | E (8.4-2)

where H, T, E : Rel(S,S) are relations called the head the tail and the exit of the procedure, respectively.

Although this is certainly not a general scheme for a recursive procedure, it is quite common in practice. This

scheme will be referred to as a simple recursion.

Notice that (8.4-2) covers the case of the iterative instruction while-do-od with H = [C]P, T = [S] and E
= [¬C].

8.5 Three concepts of program correctness

To express the property of program correctness on the ground of the algebra of binary relations, we shall use

two operations of a composition of a relation with a set. Both are similar to sequential compositions of rela-

tions defined in Sec. 2.7. In the sequel A, B, C,… will denote subsets of the set of states S and P, Q, R,…
will denote relations in Rel(S,S). Both operations are denoted by the same symbol “●”, which has also been

used for a composition of functions:

A●R = {s | (∃a:A) a R s} ― left composition; the image of A by R
R●B = {s | (∃b:B) s R b} ― right composition; the coimage of B by R.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 151

In the sequel, the symbol of composition “●” will be omitted; hence we shall write AR and RA. Intuitively

speaking (see Fig. 8.5-1):

• AR is the set of all final states of executions of R that start in A; notice however that some of them

may be at the same time final states of executions that start outside A,

• RB is the set of all initial states of executions of R that terminate in B, but if R is not a function, then

some of them may at the same time generate executions that terminate outside B or do not terminate at

all.

Fig. 8.5-1 Left- and right composition of a set with a relation

Both compositions of a relation with a set have properties similar to that of the composition of two relations.

For instance, they are associative:

A(RQ) = (AR)Q

(RQ)B = R(QB)

and distributive over unions of sets and relations:

(A | B) R = (AR) | (BR)

A (R | Q) = (AR) | (AQ)

…

They are also monotone in each argument:

if A ⊆ B then AR ⊆ BR
if R ⊆ Q then AR ⊆ AQ

and analogously for right-hand-side composition. In fact, both operations are continuous in each argument. In

the sequel, we shall assume that composition binds stronger than union hence we shall write

AR | BR instead of (AR) | (BR)

Lemma 8.5-1 For any A,B,C ⊆ S, and R : Rel(S,S) the following equalities hold:

1. [A]B = A∩B
2. A[B] = A∩B
3. (A∩B)R = A [B] R
4. R(A∩B) = R [A] B

5. (A∩B)R ⊆ C is equivalent to A[B]R ⊆ C
6. if A ⊆ [B]RC then (A∩B) ⊆ RC

Proofs are left to the reader.

Now we are ready to define three fundamental concepts concerning the correctness of programs: partial

correctness, weak total correctness, and clean total correctness. All these concepts express the fact that if an

input state of a program satisfies certain conditions, then the output state has expected properties. For

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 152

instance, we may expect that if a list-sorting program is given an appropriate list (precondition), then it will

return a sorted list (postcondition).

With every property of states, we can unambiguously associate a set of states satisfying this property. As a

consequence, the correctness of a program R for precondition A and postcondition B may be expressed in the

algebra of relations and sets in the following way:

AR ⊆ B ― partial correctness of R for precondition A and postcondition B;
 (∀a:A) if (∃ b) aRb, then b:B

A ⊆ RB ― weak total correctness67 of R for precondition A and postcondition B;
 (∀a:A) (∃ b) aRb and b:B

Partial correctness means that every execution that starts in A, if it terminates, then it terminates in B. Set A is

called partial precondition, and B is called partial postcondition. If B does not contain error-carrying states

then we talk about clean partial correctness.

Weak total correctness means that for every state a : A, there exists an execution that starts in a and ter-

minates in B. Set A is called weak total precondition, and B is called weak total postcondition. The adjective

“weak” expresses the fact that the existence of an execution from a to B does not exclude that other execu-

tions starting with a may terminate outside B or do not terminate at all. Similarly as in the former case, if B

does not contain error-carrying states then we talk about weak clean total correctness.

Both defined concepts of program correctness were historically introduced for deterministic programs,

i.e., for the case where R was a function. In such cases, the inclusion A ⊆ RB means that each execution of R

that starts in A terminates in B. That property will be called clean total correctness and programs with this

property will be said to be totally correct with clean termination. Our validating language described in Sec. 9

will include program-construction rules that guarantee clean total correctness of constructed programs.

As is easy to see, in the non-deterministic case, none of the partial and total correctness is stronger than

the other. Indeed, partial correctness does not imply termination, and the existence of one terminating execu-

tion from a to B does not mean that any terminating execution starting in a will terminate in B.

In the deterministic case, however, total correctness obviously implies partial correctness. i.e., for any par-

tial function F : S → S,

A ⊆ FB implies AF ⊆ B (8.5-1)

The following implication is also true:

if AF ⊆ B and for every a : A, F.a is defined then A ⊆ FB (8.5-2)

Both observations lead to the following theorem:

Theorem 8.5-1 If F is a function, then for any A,B ⊆ S the following facts are equivalent:

• A ⊆ FB — total correctness of F wrt A and B

• AF ⊆ B and A ⊆ FS — partial correctness of F wrt A and B, plus termination of F on A ■

Clean termination of a deterministic program F on A means that F is a total function on A, and F.a never

carries an error.

We say that a deterministic program has a halting property in A, if no execution of that program that starts

in A is infinite.

For many “practical programs”, the halting property may be so obvious that it does not need a formal

proof. For instance, the program:

67 In the earlier versions of the book the weak total correctness of relations was called just total correctness. Krzysztof

Apt convinced us that such wording may lead to misunderstanding. He also pointed out that in [6] written by him with

two other authors the notion of weak total correctness is used in a slightly different way. It is used in the context of dis-

tributed programs and combines partial correctness with absence of failures and divergence freedom.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 153

pre n, m > 0
x := 1; y := m;
while x < n
do;

x := x+1; y := y*m
od

post y = m^n

obviously halts for every n. However, there are cases where the halting property may be far from evident,

even for very simple programs. One such program is displayed on the front of Warsaw University Library:

x := n;
while x > 1

do
if x mod 2 = 0 then x := x/2 else x := 3x + 1 fi

 od

Under this program we see the following question: “Why for every n > 0 this program stops?”. This question

is, however, not adequate, since today we do not know, if this program has a halting property. It expresses a

well-known Collatz hypothesis formulated in 1937 and not answered till today. At the date, we are writing

these words (February 2024), it was only proved68 that the hypothesis is true for all n < 5*269.

A similar situation concerns Fermat’s theorem70 that was announced in the year 1637 and proved only in

1994 by a British mathematician Andrew Wiles. His proof is 100 pages long and uses an advanced topologi-

cal theory of elliptic curves. Fermat theorem can be also formulated as a halting problem.

On the ground of the theory of computability, it has been proved by Alan Turing that there is no algorithm

which given a program71 and an input state could check in a finite time, if this program terminates for this

input state.

Theorem 8.5-2 In the general case, the termination property of programs is not decidable. ■

In the sequel, proof rules for program correctness will be expressed by showing in which way the correctness

of composed programs may be proved by proving the correctness of their components. These rules will be

written in the following form:

68 One could (naïvely) expect that this result was proved by a simple checking in utilizing an ultra-fast computer. How-
ever, as is easy to calculate, if we assume that the execution of Collatz program for any n < 5*286 takes on the aver-
age 1 nanosecond, then such a check would take a time longer than 1065 times the age of the universe.

69 Andrzej Blikle once fell victim to this hypothesis, when he was reporting his work on total correctness of programs at
the University of Saarbrücken. When he said that with his method one can easily prove the termination of a program,
a listener asked him to illustrate this fact on a simple example, and gave him the Collatz program. Blikle did not know
this example, so he wrote the program on the board and proceeded to analyze it. Since he was not able to solve the
problem off hand, he said: “I will think about this problem in the evening”. But in the evening he still did not have a
proof. What a shame ― such a simple program, and he cannot cope with it. After returning to Warsaw he showed the
problem to his colleagues, and was enlightened that he was not the only one who was not able to prove the Collatz’s
hypotheses.

70 This theorem claims that for no integer n > 2 there exist three positive integers x, y, z that satisfy the equality xn + yn
= zn. That theorem had been written in 1637 by Pierre de Fermat on the margin of a book together with a commen-
tary that he found a “marvellously simple proof” of the theorem which was however too long to fit to the margin. The
theorem has been proved by Andrew Wiles in 1993, and his proof was more than 100 pages long.

71 In the original work of A. Turing programs were represented by Turing machines, but since then in became a known
fact that for every program there is a (functionally) equivalent Turing machine, and vice versa (e.g. cf. [64]).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 154

first assumption
second assumption
…

first conclusion
second conclusion.
…

where the arrow shows the direction of implication. In some rules, we have both-sided arrows, which means

that the implication is of the iff-type. The list of assumptions and of conclusions are understood as corre-

sponding conjunction.

It should be emphasized in this place that in our approach to program correctness we are not building any

“logic of programs” in Hoare’s or Dijkstra’s style. We only construct a set-theoretical model of programs

where the latter are represented by binary relations (or functions). On the ground of this model, program cor-

rectness is expressed by inclusions of the form AP ⊆ B or AP ⊆ B. Then, we formulate and prove some

lemmas which may be used either in proving programs correctness, or in building correct programs. In short,

these lemmas will be called proof rules or construction rules depending on the way we shall use them.

In the end, one comment about using single sets of states A or B, rather than pairs (C,¬C), to represent

three-valued pre- and post-conditions. In fact in using pre- and post-conditions, we are interested only in their

“domains of satisfaction”, i.e., in the first elements of each pair (C,¬C). For instance, in proving the correct-

ness of a program with a precondition:

1/x > 2 (*)

we are only interested in the behavior of the program whenever our precondition is satisfied. We do not care

about that behavior in all other cases. If, however, condition (*) would be used as a boolean expression of an

if-then-else-fi instruction, then it must be represented by a pair of sets (cf. Rule 8.6.1-2)

8.6 Partial correctness

Although our primary concern is total correctness of programs, the methods of proving partial correctness are

of interest too since in the deterministic case, proof of total correctness may be reduced to a proof of partial

correctness plus a proof of termination (cf. (8.5-2)). In turn, although in the general case termination property

is not decidable, in many practical cases it may be quite easy to prove.

8.6.1 Sequential composition and branching

When defining program correctness proof rules, it is worth distinguishing between two classes of program

constructors: simple constructors that do not introduce repetition mechanisms and recursive constructors that

introduce such mechanisms. The former are defined by composition and union of relations; the latter require

fixed-point equations. From this perspective, iteration is a particular case of recursion.

The most frequently used simple constructors of programs are sequential composition and branching.

Rule 8.6.1-1 Partial correctness of a sequential composition

For arbitrary A,D ⊆ S and P,Q : Rel(S,S) the following rule is satisfied:

there exist conditions B and C such that:
(1) AP ⊆ B

(2) CQ ⊆ D

(3) B ⊆ C

(4) A(PQ) ⊆ D

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 155

Proof From (1), (2) and the monotonicity of composition

(AP)Q ⊆ CQ ⊆ D

hence from the associativity of composition

A(PQ) ⊆ D.

To prove the bottom-to-top implication is sufficient to set

B = C = AP

Hence AP ⊆ B and BQ = APQ ⊆ D ■

Rule 8.6.1-2 Partial correctness of if-then-else-fi

For arbitrary A,D,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied:

(1) (A ∩ C)P ⊆ B

(2) (A ∩ ¬C)Q ⊆ B

(3) A if (C, ¬C) then P else Q fi ⊆ B

The proof is obvious.

In the end, three more rules which follow directly from the monotonicity of composition of a set with a re-

lation.

Rule 8.6.1-3 Strengthening a partial precondition

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds:

AP ⊆ B
C ⊆ A

CP ⊆ B

Rule 8.6.1-4 Weakening a partial postcondition

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds:

AP ⊆ B
B ⊆ C

AP ⊆ C

Rule 8.6.1-5 The conjunction and disjunction of pre- and postconditions

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds:

AP ⊆ B
CP ⊆ D

(A∩C)P ⊆ B∩D
(A | C)P ⊆ B | D

In the present section we skip the problem of proving properties of atomic components of programs such as,

e.g., assignments or variable declarations since they are not expressible in the model of abstract binary. This

issue will be discussed in Sec. 9 where Lingua-V enters the game.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 156

8.6.2 Recursion and iteration

In order to formulate proof rules for mutually recursive procedures, we generalize the operation of composi-

tion of relations with relations and with sets to the case of vectors of respectively relations and sets:

(P1,…,Pn) (R1,…,Rn) = (P1R1,…,PnRn)

and analogously for the composition of a relation with sets. In an obvious way, we can also generalize the

inclusion of sets to the inclusion of vectors:

(A1,…,An) ⊆ (B1,…,Bn) means A1 ⊆ B1 and … and An ⊆ Bn

For simplicity, the inclusion between vectors of sets is denoted by the same symbol as the inclusion of sets.

In the sequel, vectors of sets and relations as well as operations on them will be written with boldface charac-

ters.

A vector of relations R is said to be partially correct wrt the vectors of sets A and B (with appropriate

numbers of elements) iff A R ⊆ B. The notion of a continuous function is generalized to the case of vectorial

functions in an obvious way.

Now we can formulate partial-correctness proof rule in the general case of fixed-points of continuous

functions on vectors of relations.

Rule 8.6.2-1 Partial correctness of a vector of relations defined by a fixed-point equation

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if R is the least solution of the equation X =
Ψ.X, then for any A,B : Scn the following rule holds, where Ø = (Ø,…, Ø) is a n-element vector of empty

relations:

there exists a family of (vectors of) preconditions {Ai | i ≥ 0}
and a family of (vectors of) postconditions {Bi | i ≥ 0} such that

(1) (∀i ≥ 0) A ⊆ Ai
(2) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi
(3) U{Bi | i ≥ 0} ⊆ B

(4) AR ⊆ B

Proof Form Kleene’s theorem (Sec. 2.4)

R = U {Ψi.Ø | i ≥ 0}

Adding the components of (1) sidewise we obtain

U (Ai {Ψi.Ø | i ≥ 0} ⊆ U{Bi | i ≥ 0}

hence from (1) and (3), we have (4). To prove the bottom-up implication, we assume

Bi = A (Ψi.Ø) for i ≥ 0 and

Ai = A ■

From this rule, we obtain immediately a rule for single recursion, i.e., where n = 1:

Rule 8.6.2-2 Partial correctness of a relation defined by a fixed-point equation

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if R is the least solution of the equation X = Ψ.X,

then for any A,B ⊆ S the following rule holds:

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that
(1) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi
(2) (∀i ≥ 0) A ⊆ Ai
(2) U{Bi | i ≥ 0} ⊆ B

(3) AR ⊆ B

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 157

We can also formulate more specific rules for each particular polynomial function, e.g., for the simple-

recursion constructor as defined in Sec. 8.4. Below two versions of such a rule:

Rule 8.6.2-3 Partial correctness of a relation defined by simple recursion (version 1)

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation

X = HXT | E

then for any A,B ⊆ S the following rule holds:

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that
(1) (∀i ≥ 0) Ai Hi E Ti ⊆ Bi
(2) (∀i ≥ 0) A ⊆ Ai
(2) U{Bi | i ≥ 0} ⊆ B

(3) AR ⊆ B

The proof follows immediately from Rule 8.6.2-2 and from the fact that, as is easy to prove,

R = U{Hi E Ti | i ≥ 0} ■

The following top-down-implication rule with a stronger assumption may be useful as well:

Rule 8.6.2-4 Partial correctness of a relation defined by simple recursion (version 2)

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation

X = HXT | E

then for any A,B ⊆ S the following rule holds:

(1) (∀ Q) (AQ ⊆ B implies A(HQT) ⊆ B)
(2) AE ⊆ B

(3) AR ⊆ B

Proof From (1) and (2) we can prove by induction that for every i ≥ 0:

A (Hi E Ti) ⊆ B

and, therefore, by side-wise summation, we get (3). ■

Rule 8.6.2-5 A Partial correctness of a relation defined by simple recursion (version 3)

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation

X = HXT | E

then for any A,B ⊆ S the following rule holds:

(1) AH ⊆ A
(2) AE ⊆ B
(3) BT ⊆ B

(4) AR ⊆ B

Proof The three inclusions (1), (2), and (3) imply that for any i > 0, we have

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 158

A (Hi E Ti) ⊆ A E Ti ⊆ B Ti ⊆ B. ■

Now let us denote by

while (C, ¬C) do P od

the least solution of the equation

X = [C]PX | [¬C].

Setting H = [C]P, T = [S] and E = [¬C] from both general rules we can draw rules for while-do-od iteration:

Rule 8.6.2-6 Partial correctness of while-do-od loop (version 1)

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A,B ⊆ S the following rule holds:

there exists a family of postconditions {Bi | i ≥ 0} such

that
(1) (∀ i ≥ 0) A ([C]P)i [¬C] ⊆ Bi
(2) U{Bi | i ≥ 0} ⊆ B

(3) A while (C, ¬C) do P od ⊆ B

Rule 8.6.2-7 Partial correctness of while-do-od loop (version 2)

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A, B ⊆ S the following rule holds:

(1) (∀ Q) AQ ⊆ B implies A [C]QP ⊆ B
(2) A[¬C] ⊆ B

(3) A while (C, ¬C) do P od ⊆ B

■

In the literature, the following rule is also well known, although it is usually formulated for the case of two-

valued predicates, i.e. where C | ¬C = S

Rule 8.6.2-8 Partial correctness of while-do-od loop (version 3)

For every relation P : Rel(S,S), for any disjoint C,¬C ⊆ S, any A, B ⊆ S, the following rule is satisfied:

there exists N ⊆ S (called loop invariant) such that:
(1) (N ∩ C) P ⊆ N

(2) A ⊆ N

(3) N [¬C] ⊆ B

(4) A while (C, ¬C) do P od ⊆ B

■

Proof Let (1) – (3) be satisfied. Since

(N ∩ C) P = N [C] P

from (1) we can prove by induction:

N([C]P)i ⊆ N for all i ≥ 0

Therefore and from (2)

A([C]P)i ⊆ N for all i ≥ 0

hence from (3)

A([C]P)i[¬C] ⊆ N[¬C] ⊆ B for all i ≥ 0

In summing these inclusions sidewise, we get (4). Now assume that (4) is satisfied and let us set:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 159

(5) N = A([C]P)*

Therefore and from (4) we get N[¬C] ⊆ B, hence (3). In turn (5) is equivalent to

N = A | A([C]P)+,

hence (2). To prove (1) notice that:

(N∩C)P = N[C]P = A[C]P | A([C]P)+[C]P = A([C]P)+ ⊆ N ■

8.7 Weak total correctness

Rules for weak total correctness are used to prove that if an input state of a program satisfies a precondition,

then at least one execution of that program will terminate with postconditions satisfied. If a program is de-

terministic, then weak total correctness coincides with clean total correctness which means that the unique

execution of a program terminates with a state satisfying a postcondition.

8.7.1 Sequential composition and branching

Rule 8.7.1-1 Weak total correctness of a composition

For any A,D ⊆ S and P,Q : Rel(S,S) the following rule holds:

there exist conditions B and C such that
(1) A ⊆ PB

(2) C ⊆ QD

(3) B ⊆ C

(4) A ⊆ (PQ)D

Proof. From (1), (2) and (3) we immediately have:

A ⊆ PB ⊆ PC ⊆ P(QD) = (PQ) D.

Now assume that A ⊆ (PQ)D, which means that A ⊆ P(QD). Assuming B = C = QD we get (1) and (2). ■

Rule 8.7.1-2 Weak total correctness of if-then-else72

For any A,B,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied:

(1) A ∩ C ⊆ PB

(2) A ∩ ¬C ⊆ QB

(3) A ⊆ C | ¬C

(4) A ⊆ if (C, ¬C) then P else Q fi B

Proof. Let (1) – (3) be satisfied. Then:

[C] (A ∩ C) ⊆ [C] PB
[¬C] (A ∩ ¬C) ⊆ [¬C] QB

Adding the inclusions sidewise:

[C] (A ∩ C) | [¬C] (A ∩ ¬C) ⊆ [C] PB | [¬C] QB = ([C]P | | [¬C] Q) B

The following equalities are also true

[C] (A ∩ C) = A ∩ C

72 Notice that in the case of two-valued predicates, condition (3) would not be necessary, since in that case C | ¬C = S.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 160

and analogously for ¬C. Hence and from (3)

[C] (A ∩ C) | [¬C] (A ∩ ¬C) = (A ∩ C) | (A ∩ ¬C) = A

and finally

(4) A ⊆ [C] PB | [¬C] QB

In turn, (4) implies A ⊆ C | ¬C, and from (4) and the fact that C and ¬C are disjoint, follow (1) and (2). ■

Observe the assumption (3) in our rule. In the case of classical predicates where C | ¬C = S, this condi-

tion is a tautology.

In the end, three more rules for pre- and postconditions analogous to the respective rules for partial cor-

rectness.

Rule 8.7.1-3 The strengthening of a weak total precondition

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds:

A ⊆ PB
C ⊆ A

C ⊆ PB

Rule 8.7.1-4 The weakening of a weak total postcondition

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds:

A ⊆ PB
B ⊆ C

A ⊆ PC

Rule 8.7.1-5 The conjunction and disjunction of conditions

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds:

A ⊆ PB
C ⊆ PD

A∩C ⊆ P(B∩D)
A | C ⊆ P(B | D)

The proofs of the last three rules follow directly from the definitions of total correctness. Our last rule in this

section concerns resilient conditions.

Rule 8.7.1-6 Propagation of resilient conditions

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds:

(1) A ⊆ PB
(2) CP ⊆ C

A∩C ⊆ P(B∩C)

In this rule, C is said to be resilient to P, because its satisfaction is not violated by P. This rule, although

quite simple, has a practical value, since it will be applied in all situations where a certain property of a state

once established, remains in force till the end of the execution of a program. E.g., once we declare a variable

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 161

it remains declared during the whole (remaining) lifetime of the hosting program. The proof of this rule is the

following:

From (1) by Rule 8.7.1-3 we have A∩C ⊆ PB. Consequently, if a : A∩C then there exists a state b such

that a P b and b : B. At the same time, since a : C, then by (2) b : C, hence b : B∩C. ■

8.7.2 Recursion and iteration

Similarly, as in the case of partial correctness, we start from the case of a general recursive operator.

Rule 8.7.2-1 Weak total correctness of a vector defined by a general fixed-point equation

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if R is the least solution of X = Ψ.X, then

the following rule holds, where Ø = (Ø,…,Ø):

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that
(1) (∀ i ≥ 0) Ai ⊆ (Ψi.Ø)Bi
(2) A ⊆ U{Ai | i ≥ 0}
(3) (∀ i ≥ 0) Bi ⊆ B

(4) A ⊆ RB

Proof If R is the least fixed point of Ψ, then from the continuity of Ψ

(4) R = U{Ψi.Ø | i ≥ 0}

Adding sidewise inclusions (1) we have

U {Ai | i ≥ 0} ⊆ U ({Ψi.Ø | i ≥ 0} Bi)

Hence from (2) and (3), we have (4). Now assume that A ⊆ RB which means that

A ⊆ U{Ψi.Ø | i ≥ 0} B

Let for i ≥ 0

Ai = (Ψi.Ø) B and

Bi = B

Then obviously (1), (2), and (3) are satisfied. ■

From this rule for n = 1, we immediately conclude the next rule

Rule 8.7.2-2 Weak total correctness of a relation defined by a general fixed-point equation

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if R is the least solution of an equation X = Ψ.X,

then the following rule holds:

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that

(1) (∀ i ≥ 0) Ai ⊆ (Ψi.Ø)Bi
(2) A ⊆ U {Ai | i ≥ 0}

(3) (∀ i ≥ 0) Bi ⊆ B

(4) A ⊆ RB

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 162

Rule 8.7.2-3 Weak total correctness of a relation defined by simple recursion (version 1)

If relation R is the least solution of the equation X = H X T | E then the following rule holds:

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that
(1) (∀ i ≥ 0) Ai ⊆ (Hi E Ti) Bi
(2) A ⊆ U {Ai | i ≥ 0}
(3) (∀ i ≥ 0) Bi ⊆ B

(4) A ⊆ RB

Proof Define

Ψ.X = H X T | E

In this case

Ψ0.Ø = E

Ψ1.Ø = Ψ.(Ψ0.Ø) = H (Ψ0.Ø) T | E = H E T | E

Ψ2.Ø = Ψ.(Ψ1.Ø) = H (Ψ1.Ø) T | E = H (Ψ1.Ø) T | E = H2 E T2 | H1 E T1 | E

Therefore, by induction, for any n ≥ 0

Ψi.Ø = U { Hi E Ti | i=1,2,…n} | E = = U { Hi E Ti | i=0,1,…n}

Now, by (1) and the monotonicity of composition of a relation with a set, we have for every i ≥0

Ai ⊆ Hi E Ti Bi ⊆ (U {Hi E Ti | 1=0,...,n}) Bi ⊆ (Ψi.Ø) Bi

From this inclusion together with (2), (3) and Rule 0-2, we conclude

A ⊆ RB

In turn, if the inclusion is satisfied, then we set

Ai = (Ψi.Ø) B

Bi = B

With this settings (1) and (3) are obviously satisfied, and (2) is satisfied because

A ⊆ RB ⊆ U{ Ψi.Ø | i≥ 0} B = U{ (Ψi.Ø) B | i≥0} = U {Ai | i ≥ 0} ■

Rule 8.7.2-4 Clean total correctness of a function defined by simple recursion (version 2)

If F is the least solution of the equation X = HXT | E where H, T, and E are functions and the domains of

H and E are disjoint, then the following rule holds:

(1) (∀ Q) (AQ ⊆ B implies A(HQT) ⊆ B)
(2) AE ⊆ B

(3) A ⊆ FS

(3) A ⊆ FB

Proof As is easy to prove, for any H, T, and E the least solution of our equation is

U{ Hn E Tn | n≥0 }

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 163

and if additionally H, T, and E are functions and the domains of H and E are disjoint, then this solution is a

function. Now, by (1), (2) and the Rule 8.6.2-4, AF ⊆ B, i.e., F is partially correct wrt A and B. Since (3)

means that F is total on A, by Theorem 8.5-1 we can claim that it is totally correct wrt A and B. ■

From Rule 8.7.2-3 we can immediately derive our first rule about while-do-od instruction based on the

observation that while (C, ¬C) do P od is the least solution of the equation

X = [C]PX | [¬C].

Let then R be the least solution of this equation, i.e.,

R = ([C]P)*[¬C].

Rule 8.7.2-5 Clean total correctness for nondeterministic while-do-od

there exists a family of preconditions {Ai | i ≥ 0}
and a family of postconditions {Bi | i ≥ 0} such that
(1) (∀ i ≥ 0) Ai ⊆ ([C]P)i[¬C] Bi
(2) A ⊆ U {Ai | i ≥ 0}

(3) (∀ i ≥ 0) Bi ⊆ B

(4) A ⊆ RB

The most commonly known version of a rule for while-do-od concerns a deterministic case, and does not

require the construction of two infinite families of conditions. It is also based on a well-known method of

proving the halting property of a loop. First, we introduce two auxiliary concepts.

We say that a function F : S → S has limited replicability property in a set N ⊆ S, if there exists no infi-

nite sequence of the form: s, F.s, F.(F.s),… in N.

A partially ordered set (U, >) is said to be well-founded, if there is no infinite decreasing sequence in it,

i.e., a sequence u1 < u2 < … The following obvious lemma is useful in proving the limited replicability of a

function F : S → S.

Lemma 8.7.2-1 If there exists a well-founded set (U, <) and a function K : N ⟼ U such that for any a : N,
F.a = !, F.a : N and

K.a > K.(F.b)

then F has limited replicability in N. ■

Now we can formulate our rule.

Rule 8.7.2-6 Clean total correctness of a deterministic while-do-od loop

For any function F : S → S, any A,B,N ⊆ S, and any disjoint C,¬C ⊆ S

(1) A ⊆ N

(2) N ⊆ C | ¬C

(3) N ∩ ¬C ⊆ B

(4) N ∩ C ⊆ FN (clean total correctness of F)

(5) [C]F has limited replicability in N

(6) A ⊆ while (C,¬C) do F od B

Proof Assume that (1), (2), (3) are satisfied but the inclusion

N ⊆ ([C]F)*[¬C]S.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 164

does not hold. In that case, there exists s0 : N, that does not belong to

([C]F)*[¬C]S = ([C]F)+[¬C]S | ¬C,

and therefore s0 does not belong to ¬C. From there, by (3), s0 : N∩C, and therefore by (4), there exists s1
such that [C]F.s0 = s1 and s1 : N. Therefore by (3)

s1 : C | ¬C.

Now, s1 cannot belong to ¬C, since then s0 would belong to

[C]F[¬C]S

which is a subset of ([C]F)*[¬C]S. Reasoning in this way, we could prove by induction that for any n ≥ 0

there exists a sequence si : i = 0,1,…n such that s0 : N and

si [C]F si+1 and si : N for i = 0,1,…,n

Since F is a function, this implies the existence of an infinite sequence

si [C]F si+1 and si : N for i = 0,1,…

which contradicts (5). ■

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 165

9 VALIDATING PROGRAMMING

Generally speaking, by validating programming, we shall mean such program creation techniques that ensure

clean total-correctness of programs wrt their specifications. In our approach, programs and their specifica-

tions will constitute syntactic components of metaprograms. This technique was already announced in Sec.

1.1 and its abstract mathematical foundations were described in Sec. 8. The present section is devoted to the

techniques of developing correct metaprograms written in an extended programming language, Lingua-V,

which includes Lingua.

An approach that gave rise to validated programming was proposed by A.Blikle in papers [25], [26] and

[27] published at the turn of the decades 1970s and 1980s. In writing these papers, he concluded that to create

a language with rules that guarantee program correctness, one has to equip this language with mathematical

semantics. This observation provoked his further research described in [30], [32] and [33] which is now con-

tinued in our book.

9.1 Languages of validating programming

From a pure logical perspective metaprograms may be seen as theorems that claim the correctness of pro-

grams that they (syntactically) include. An example of such a metaprogram written in Lingua-V, may be the

following:

pre x,k is integer and k > 0:
x := 0;
asr x = 0 rsa
while x+1 ≤ k do x := x+1 od

post x = k

Metaprograms are our ultimate targets, and therefore, programmers in Lingua will, in fact, develop metapro-

grams in Lingua-V. This language will include five major syntactic categories:

1. Programs — that are just programs in Lingua.

2. Conditions ― that express properties of states; their denotations are three-valued partial predicates on

states, and they include all boolean expressions of Lingua.

3. Assertions — that are instructions aborting program executions, if an indicated condition is not satis-

fied. Syntactically assertions are of the form asr con rsa, where con is a condition.

4. Specified programs ― that are programs with nested assertions.

5. Metaprograms — that are specprograms with pre- and postconditions.

Lingua-V is, in a sense, a metalanguage since it is used to talk about programs in Lingua. The denotations of

metaprograms are just classical truth values tt or ff, which means that metaprograms are simply correct or

not. An important consequence of this fact is that at the level, where we talk about the development of correct

metaprograms, we use classical two-valued logic.

In developing correct programs, we remain in the world of classical two-valued logic.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 166

The fact that in Lingua-V we use 3-valued conditions may lead to a false conclusion that the development of

correct metaprograms must be carried in a 3-valued logic73. Note, however, that our conditions constitute just

a category of expressions, which only “happen to look like” logical formulas, but at the level of program de-

velopment they are not.

To formulate the rules of constructing correct metaprograms, we shall need yet another metalevel. We de-

note it by Lingua-MV and assume that it includes Lingua-V plus the following syntactic categories:

1. Patterns — that describe sets of elements of Lingua-V, e.g. a pattern of a metaprogram may be of the

form pre prc : spr pos poc, where prc and poc are metavariables running over conditions and spr is

a metavariable running over specified programs.

2. Metaconditions — that describe properties of conditions or their patters, i.e. that one condition is

stronger than another one.

3. Metaprograms — that describe properties of programs or of their patterns.

4. Metaprogram construction rules that belong to two categories:

a. nuclear rules — assuring that metaprograms matching certain patterns are correct,

b. implicative rules — assuring that if some metaconditions and/or metaprograms are

true/correct, that some other metaprograms are correct.

An example of a nuclear rule may be the following:

pre (ide is free) and (tex is type)
let ide be tex with yex tel (9.1-1)

post var ide is tex with yex

It expresses the fact that for any

ide : Identifier,
tex : TypExp,
yex : YokExp

metaprograms matching pattern (9.1-1) are correct. From this rule we may derive the following concrete

correct metaprogram:

pre (length is free) and (real is type)
let length be real with value > 0 tel

post var length is real with value > 0

In turn, an example of an implicative rule may be the following:

pre prc : spr post poc metaprogram pattern

poc  poc-1 metacondition pattern

pre prc : spr post poc-1 metaprogram pattern

This rule ensures that for any prc, spr, poc and poc1 (of appropriate categories) if both propositions above

the line are true, then the metaprogram below the line is correct. It is to be emphasized that in our approach

every construction rule is a theorem — rather than an axiom of a logic of programs — and therefore must be

proved. In our approach, we do not develop any “logic of programs” as in the approaches of C.A.R. Hoare

[61], [5] and [6] or E. Dijkstra [50] and [51], or as in algorithmic logic [10].

To simplify our wording we shall informally identify patterns with syntactic elements that they represent.

E.g. we will say that (9.1-1) is a metaprogram, rather than a pattern of a metaprogram.

To conclude this section let’s formulate some remarks about the degree of formalization of our linguistic

levels:

73 Readers interested in an analysis of a variety of 3-valued logics that may be based on our 3-valued predicates, are
referred to [65].

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 167

1. Lingua is a programming languages, which has been fully formalized, i.e. it has a formally defined

syntax and semantics. So far it hasn’t been completely described — some definitions of its elements

have been skipped — but its definition must be completed before the implementation of the language.

2. Lingua-V is a metalanguage that we shall not formalize at the moment but, again, it should be for-

malized and completed in the future when it comes to the development of a computer support for the

development of correct metaprograms (see Sec. 13.1).

3. The situation with Lingua-MV is analogous. We won’t formalize it now, but hopefully some of our

readers will do it in the future.

4. MetaSoft is our meta metalanguage that we use to talk about all our languages. This metalanguage

will not be formalized.

Although Lingua was developer from denotations to syntax, Lingua-V and Lingua-MV will be developed

in a converse order since in this case:

• we are not formalizing their definitions,

• we are developing them by extending an existing language Lingua.

It should be mentioned at the end that there is one more language to be formalized in the future — a language

for the development of denotational definitions of programming languages. So far Lingua has been defined

in a non-formalized MetaSoft but in the future one may think of developing a computer system supporting

language designers developing denotational definitions of new languages. In such a case a new metalanguage

will be necessary. We briefly discuss this issue in Sec. 13.2.

9.2 Conditions

9.2.1 General assumptions about conditions

Denotationally conditions represent partial functions from states to boolean values or errors:

cod : ConDen = WfState → BooValE the denotations of conditions

For future use we introduce the following notations for truth values

tv = (tt, ‘boolean’)
fv = (ff, ‘boolean’)

By

con : Condition = …

we shall denote the (colloquial) syntactic domain of conditions. As metavariables running over Condition we

shall also use

• prc to denote preconditions,

• poc to denote postconditions.

The syntactic domain of conditions of a “practical language” may be very large, and strongly dependent on

the domain of applications of such a language. Therefore, we shall not attempt to define a “complete” lan-

guage of conditions. Instead we only list basic assumptions about this language, and we show its main cate-

gories.

Our first assumption is that the domain of conditions is closed under 3-valued logical connectives and

quantifiers, i.e.:

(con1 and con2) , (con1 or con2) , (not con) , (∀ ide : con) | (∃ ide : con)

belong to Condition for any con1, con2, con : Conditions and ide : Identifier. To gain the commutativity

of conjunction and disjunction we assume that the boolean constructors are defined in the Kleene’s style ra-

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 168

ther than in the style of McCarthy’s, (Sec. 2.10)74. We also assume that we may skip parentheses in a usual

way.

The semantics of conditions will be denoted be square brackets [], and besides we also introduce the con-

cept of a truth domain of a condition:

[con] : WfState → BooValE semantics of conditions

{con} = {sta | [con].sta = tv} truth domains of a conditions

From now on we shall use square brackets to denote the semantics of all components of metaprograms, as-

suming that a context will always indicate which semantics we mean. We assume further that conditions

should be error transparent (cf. Sec. 2.9), i.e., that for any condition con

if is-error.sta then [con].sta = error.sta.

In the end we assume that Condition includes a special condition NF that is never false, i.e., such that

[NF].sta =
 is-error.sta ➔ error
 true ➔ tv

Note that we can’t introduce a conditions that is always true, because it would be not error transparent.

9.2.2 Value-oriented conditions

Value-oriented conditions describe the properties of values assigned to variables and attributes in states. We

assume that syntactically they include all value expressions with boolean values, i.e. boolean expressions,

such as, e.g.,

x+1 < 2*z and z > 0,

but we assume that their boolean connectives are understood in Kleene’s way (cf. Sec. 9.2). Value-oriented

conditions may also include conditions that are not boolean expressions. Typical examples in this category

are equality conditions of the form

vex-1 = vex-2.

Note that at the level of boolean expressions, we usually do not allow comparisons of structural values, such

as e.g., lists, arrays, objects or databases, since this might be computationally too expensive. However, we

allow such comparisons at the level of conditions, because in this case we do not check (compute) the equali-

ties, but we only use them to express the properties of programs. Another example of a condition that is not a

boolean expressions may be

increasingly ordered real (ide)

This condition is satisfied if ide points to a list of real numbers ordered increasingly

9.2.3 Cov-oriented conditions

The mechanism of type-covering relations imposes a necessity of checking types’ compatibilities in four fol-

lowing situations:

1. when a value is assigned to a reference by an assignment instruction,

2. when a value of an actual parameter is assigned to the reference of a formal parameter by the mecha-

nism of entering a procedure call,

3. when a reference of an actual parameter is assigned to the corresponding formal parameter by the

mechanism of entering a procedure call,

4. when a reference of a formal parameter is passed (back) to the corresponding actual parameter.

74 In building the denotations of boolean value-expressions we still use McCarthy’s logical connectives.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 169

In cases 1., 2. and 3 we refer to the current covering relation, but in case 4., i.e., at the exit of a procedure, we

have to refer to the covering relation of a call-time state (Sec. 6.6.3.5).

To illustrate this case assume that at the exit of an imperative-procedure call we have a local terminal state

(see Sec. 6.6.3)

lt-sta = ((lt-cle, lt-pre, lt-cov), lt-sto)

with the following bindings of a formal reference-parameter ide-fr:

ide-fr → (tok, (typ-r, yok, ota)) → (dat, typ-v).

Since lt-sta is well-formed, the following relationship is satisfied.

typ-r TTA.lt-cov typ-v. (9.2.3-1)

Now, the mechanism of returning the reference of ide-fr to an actual reference-parameter ide-ar is activated,

and creates a global terminal state

gt-sta = ((gt-cle, gt-pre, gt-cov), gt-sto).

with the following bindings:

ide-ar → (tok, (typ-r, yok, ota)) → (dat, typ-v).

Since the operation of returning parameters must guarantee the well-formedness of gt-sta, we have to check

if the following relationship is satisfied:

typ-r TTA.gt-cov typ-v.

However, as we have seen in Sec. 6.6.3.5, the global terminal covering relation cov-gt is equal to a call time

covering relation cov-ct, which means that we must ensure the relationship

typ-r TTA.ct-cov typ-v, (9.2.3-2)

at the exit of the body of our procedure. Note in this place that lt-cov may be larger than ct-cov — since it

might have been enriched during the execution of the procedure’s body — and therefore (9.2.3-1) may be

satisfied, whereas (9.2.3-2) is not.

To check the satisfaction of (9.2.3-2) at the exit of the procedure’s body in the rule of the development of

a procedure (Rule 9.4.6.3-1), we have to express this fact in the postcondition of the body, hence as a proper-

ty of the local terminal state. But in this state we do not “have access” to the call-time relation. Consequently,

we have to somehow “memorize” ct-cov in the syntax of conditions.

To cope with this problem we first introduce a concept of cov-expressions that evaluate to covering rela-

tions:

coe: CovExp =
 (TypExp , TypExp) |
 (TypExp , TypExp) ; CovExp

Their semantics is the following:

[coe] : WfState ⟼ CovRel | Error

We skip its obvious definition, assuming that an error message is signalized in three situations:

1. if some involved type expressions evaluate to errors,

2. if in a pair of types one is a data type and the other is an object type,

3. if an object type is not a name of a declared class.

Now, to express the satisfaction of (9.2.3-2) as a property of a local terminal state, we introduce two new

categories of conditions:

coe is current coe evaluates to the current covering relation

fpa well-valued in coe references of formal parameters fpa accept their values wrt

coe

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 170

The denotation of the first condition is the following:

[coe is current].sta =
 is-error.sta ➔ error.sta
 let
 c-cov = [coe].sta
 ((cle, pre, cov), sto) = sta
 c-cov : Error ➔ c-cov
 c-cov ≠ cov ➔ ‘current cov-relation not confirmed’
 c-cov = cov ➔ tv

To define the denotation of the second one we need an auxiliary function

list-of-ide : ForPar ⟼ LisOfIde

that given a (list of) formal parameter, i.e., a syntactic element, e.g.,:

x, y, z as real, n, m, p as integer

returns the list of identifiers

x, y, z, n, m, p

(cf., a similar construction in Sec. 6.6.3.3). We skip a formal definition of this function.

[fpa well-valued in coe].sta =
 is-error.sta ➔ error.sta
 let
 cov = [coe].sta
 (ide-1,…,ide-n) = list-of-ide.fpa
 cov : Error ➔ cov
 let
 (env, (obn, dep, ota, sft, ‘OK’)) = sta
 obn.ide-i = ? ➔ ‘variable not declared’ for i = 1;n
 dep.(obn.ide-i) = ? ➔ ‘variable not initialized’ for i = 1;n
 (∀i)(obn.ide-i VRA.cov dep.(obn.ide-i)) ➔ tv
 true ➔ fv

Note that the acceptance of values by corresponding references is checked wrt the type-covering relation in-

dicated by coe which needs not coincide with the current relation carried by sta.

Given these new categories of conditions we can express the fact75 that at the exit of procedure body for-

mal reference parameters are well-valued wrt a call-time covering relation:

prc-call  coe is current and

poc-body  fpa-r well-valued in coe

This technique will be used in Sec. 9.4.6.3 where we formulate a rule for the creation of procedure declara-

tions that lead to correct procedure calls.

Our last condition in this section concerns the enrichment of a covering relation by a new pair of types.

We recall (cf. Sec. Sec. 5.4.2 and 6.7.5) that two types may be added to a covering relation if:

1. they are different,

2. they do not belong to this relation,

3. they are either both data types or both object types,

4. if they are object types, i.e., identifiers, then they have to be the names of declared classes.

The following condition checks if a given pair of types can be added to a current covering relation:

75 This fact is a metacondition from the level of Lingua-MV (see Sec. 9.1).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 171

[consistent(tex-1, tex-2)].sta =
 is-error.sta ➔ error.sta
 [tex-i].sta : Error ➔ [tex-i].sta for i = 1,2
 let
 typ-i = [tex-i].sta for i = 1,2
 ((cle, pre, cov), sto) = sta
 typ-1 : DatTyp and typ-2 : ObjTyp ➔ ‘types not comparable’
 typ-2 : DatTyp and typ-1 : ObjTyp ➔ ‘types not comparable’
 (typ-1, typ-2) : cov ➔ ‘types already in covering relation’
 typ-1, typ-2 : DatTyp ➔ tv
 cle.typ-i = ? ➔ ‘object types must be declared’ for i = 1,2
 true ➔ tv

9.2.4 Value-, type- and reference-oriented conditions

Conditions of this category describe, except (11), properties of output states of non-procedural categories of

declarations. Condition (11) does not belong to this group, but is listed here because it is a necessary prereq-

uisite for all declarations to execute cleanly. Below we show some typical examples of conditions associated

with values, types and references, excluding these of Sec. 9.2.3:

(1) ty-ide is type in cl-ide, ty-ide is declared as type constant in class cl-
ide

(2) ide is tex, ide is a type constant pointing to a type indicated by

tex
(3) att at-ide is tex with yex in cl-ide as pst, at-ide is declared with tex and yex in class cl-

ide…
(4) var ide is tex with yex, ide is a declared variable of type tex and yoke

yok
(5) rex is reference, reference expression rex evaluates clean-

ly
(6) vex is value, value expression vex evaluates clean-

ly
(7) tex is type, type expression tex evaluates clean-

ly
(8) cli is class, cli is either empty-class or an identifier of a declared

class
(9) ide child of cli, ide is an identifier of a declared class which is a child of class indicated by

cli
(10) tex1 covers tex2, tex1 and tex2 evaluate cleanly

and…
(11) ide is free ide has not been de-

clared

Below we define only two of these categories of conditions since the remaining ones seem obvious.

[att at-ide is tex with yex in cl-ide as pst].sta =
 is-error.sta ➔ error.sta
 [tex].sta : Error ➔ [tex].sta
 let
 ((cle, pre, cov), sto) = sta

typ = [tex].sta
 yok = [yok] we recall that the denotation of a yoke expression is a

yoke

 cle.cl-ide = ? ➔ ‘class unknown’
 let

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 172

 (cl-ide, tye, mee, obn) = cle.cl-ide
 obn.at-ide = ? ➔ ‘attribute unknown’
 let
 (tok, (at-typ, at-yok), at-ori) = obn.at-ide
 typ ≠ at-typ ➔ ‘types not compatible’
 yok ≠ at-yok ➔ ‘yokes not compatible’
 pst = ‘private’ and ar-ori ≠ cl-ide ➔ ‘privacy status not adequate’
 pst = ‘public’ and ar-ori ≠ $ ➔ ‘privacy status not adequate’
 true ➔ tv

Note that in yok ≠ at-yok we compare two functions, which is not computable, but this fact does not matter,

since conditions are not evaluated.

Proceeding to the definition of (9) we recall that a child class named ch-ide is a child of a parent class

named pa-ide, if it inherits all signatures and all attributes of the parent class.

[ch-ide child of pa-ide].sta =
 is-error.sta ➔ error.sta
 let
 ((cle, pre, cov), sto) = sta
 cle.pa-ide = ? ➔ ‘parent class unknown’
 cle.ch-ide = ? ➔ ‘child class unknown’
 let
 pa-cla = cle.pa-ide
 (ch-ide, [], fu-mee, ch-obn) = make-funding-class.ch-ide. pa-cla (see Sec. 6.7.3)

 (ch-ide, ch-tye, ch-mee, ch-obn) = cle.ch-ide
 fu-mee /⊆ ch-mee ➔ ‘signatures not compatible’

dom.pa-obn /⊆ dom.ch-obn ➔ ‘attributes not compatible’
 true ➔ tt

At the end a comment about condition (6). For it to be satisfied, all variables and attributes in vex must be

declared and initialized. This is why (6) has been classified as declaration-oriented condition. It is also worth

noticing that the satisfaction of (6) implies that the evaluation of vex won’t generate an error message, e.g.,

an overflow.

9.2.5 Procedure-oriented conditions

Conditions of this category describe the effects of procedure declarations (operator @ is defined in Sec.

9.2.7).

(1) pr-ide (val fpv ref fpr) begin body end imperative in cl-ide,
(2) fu-ide (val fpv ref tex) begin body return vex end functional in cl-ide,
(3) ob-ide (val fpv ref ob-ide) begin body end objectional in cl-ide,
(4) procedure cl-ide.pr-ide opened
(5) (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide) @ con

The denotation of (1) is the following:

[pr-ide (val fpc-v ref fpc-r) begin body end imperative in cl-ide].sta =
 is-error.sta ➔ error.sta
 let
 ((cle, pre, cov), sto) = sta
 cle.cl-ide = ? ➔ ‘class unknown’
 let
 (cl-ide, tye, mee, obn) = cle.cl-ide
 mee.pr-ide = ? ➔ ‘pre-procedure unknown’
 let

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 173

declared-pre-proc = mee.pr-ide
 expected-pre-proc = create-imp-pre-pro.([fpd-v], [fpd-r], [body])
 declared-pre-proc ≠ expected-pre-proc ➔ fv
 true ➔ tv

Our condition claims three facts:

1. cl-ide is a name of a declared class,

2. pr-ide is a name of a procedure in this class,

3. pre-procedure pointed by pr-ide is equal to a pre-procedure that would be created by a declaration

proc pr-ide (val fpc-v, ref fpc-r) begin body end.

Note that in 3. we do not claim that the body of the declared pre-procedure is body, but that the declared pro-

cedure (a denotational element) is identical with a procedure generated by proc pr-ide (val fpc-v, ref fpc-r)
begin body end. It is, therefore, not a claim about syntax, but about its “denotational effect”. This condition

is also not computable. The definitions for cases (2) and (3) are analogous.

Condition (4) claims that pre-procedure pr-ide declared in class cl-ide gave rise — due to the opening

declaration — to a procedure assigned to procedure indicator (cl-ide, pr-ide) in the procedure environment

of the current state. We skip an obvious definition.

The last category of conditions has an algorithmic character (see Sec. 9.2.7), and will be used to describe

the effect of an action of passing actual parameters to formal parameters in a procedure call. In its definition

we shall refer to function pass-actual defined in Sec. 6.6.3.4. To define this condition we only need to de-

fine its imperative component:

[pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide] : WfState ⟼ WfState

[pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide].sta =
 is-error.sta ➔ sta ◄ error.sta
 let
 (env, sto) = sta
 new-sto = pass-actual.(fpa-v, fpa-r, apa-v, apa-r, cl-ide).env.sto
 is-error.new-sto ➔ sta ◄ error.new-sto
 true ➔ (env, new-sto)

We recall that cl-ide is a name of a class.

A state that satisfies condition (5) guarantees that starting with it, the execution of pass-actual will ter-

minate cleanly, and the output state will satisfy condition con. We shall use this condition in Sec. 9.4.6.3,

where we formulate a rule for constructing correct procedure calls.

9.2.6 Assertions and specified programs

As we have already seen in Sec. 8, the rules of the development of correct metaprograms are lemmas which

guarantee the correctness of some metaprograms provided that their components were correct. In an abstract

case where programs are represented by binary relations between (abstract) states, correctness of programs

was expressed by pre- and postconditions. However, at the level of a programming language sometimes we

may need to talk not only about the properties of input and output states of programs, but also about proper-

ties of their intermediate states.

We shall start from the introduction of a syntactic category of assertions whose domain is defined by the

following equation:

asr : Assertion = asr Condition rsa

The semantic of assertions is the following:

[asr] : WfState → WfState
[asr con rsa].sta =
 is-error.sta ➔ sta

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 174

[con].sta = ? ➔ ?
[con].sta : Error ➔ sta ◄ [con].sta
[con].sta = fv ➔ sta ◄ ‘assertion not satisfied’

 true ➔ sta

Note that an error message will be generated by assertions in two situations:

1. when the value of the condition is an error,

2. when the condition is not satisfied.

An assertion may be regarded as a filter that is transparent for states satisfying the included condition, and

otherwise aborts the execution of a program.

Another new concept that we shall need in the future will be used in building rules for the development of

class declarations (Sec. 9.4.4.2). By an anchored class transformer we mean an imperative element with the

following syntactic domain:

act : AncClaTra = ClaTra in Identifier

and the following semantics:

[ctr in ide] : WfState → WfState
[ctr in ide] = [ctr].ide.

The identifier in this structure is called an anchor. We recall that the denotations of class transformers consti-

tute the following domain:

ctc : ClaTraDen = Identifier ⟼ WfState → WfState.

which means that a transformer, when given a (class) identifier, becomes a state-to-state function, i.e., a de-

notation of an anchored class transformer.

Now we are ready to define specified programs and their specified components. Intuitively they are im-

perative components of programs with nested assertions. Below we define the corresponding syntactic do-

mains. We also introduce the concepts of on-zones and of-zones of specinstructions with semantics defined a

little later.

sin : SpeIns = specified instructions or specinstructions

Instruction |
Assertion |
SpeIns ; SpeIns |
asr con in SpeIns rsa | on-zones

off con in SpeIns ffo | off-zones

if ValExp then SpeIns else SpeIns fi |
if-error ValExp then SpeIns fi |
while ValExp do SpeIns od |
skip-ins

sde : SpeDec = specified declarations or specdeclarations
 Declaration |
 Assertion |
 SpeDec ; SpeDec |
 skip-dec

sct : SpeClaTra = specified class transformers or spectransformers

 AncClaTra |
Assertion |

 SpeClaTra ; SpeClaTra |
 skip-sct

spp : SpeProPre = specified program preambles

 SpeDec |

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 175

 SpeIns |
 SpeProPre ; SpeProPre |
 skip-spp

spr : SpePro = specified programs or specprograms

SpeProPre ; open procedures ; SpeIns |
SpeProPre |
SpeClaTra

Sometimes we shall need to express the fact that an assertion asr con rsa is to be satisfied not only in one

particular location of a specinstruction sin, but during the “whole execution” of sin, i.e., by all its intermedi-

ate states with the exclusion of local states of procedure calls. In such a case, instead of “physically” inserting

an assertion into sin in all expected positions, we shall use a on-zone instruction of the form

asr con in sin rsa

where con will be called a zone assertion. Typical situations where we want to insure the satisfaction of an

assertion in a zone take place in data-base programming, where zone assertions are known as integrity con-

straints. In the same area of applications we sometime wish to “switch off” a zone assertion, to perform an

operation that temporarily “spoils” an integrity constraint. In such a case we shall write

off con in sin on

to indicate the range of the off-zone. Examples of the use of both concepts in metaprogram derivation are

shown in Sec. Sec. 9.5.1 and 9.5.1.

We shall not formalize the ranges of assertions, since this would lead to too many technicalities, e.g., in

the case when zone ranges overlap. We only wish to signalize the idea, and to use it in simple situations.

In the end it is worth noticing that the semantics of zones is not compositional, since in a general case the

denotation

[asr con : sin rsa]

can’t be described as a function of [sin] and [con]. As an example consider two following specinstructions:

asr x > 0: x := x rsa and

asr x > 0: x := -x ; x := -x rsa

The denotations of their instructions are identical, but the denotations of declarations are not.

9.2.7 Algorithmic conditions

Algorithmic conditions are conditions that include specified programs. The domain of algorithmic conditions

is defined in the following way:

con : AlgCondition =
SpePro @ Condition | left-algorithmic conditions76

Condition @ SpePro right-algorithmic conditions

The semantics of algorithmic conditions is as follows:

[spr @ con].sta =
 (∃ sta1 : {con}) [spr].sta = sta1 ➔ tv

true ➔ fv

[con @ spr].sta =

76 Left algorithmic conditions, although not called in this way, constituted a fundament of algorithmic logic developed at
Warsaw University in the decades 1970. and 1980. (see [10]Błąd! Nie można odnaleźć źródła odwołania.).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 176

 (∃ sta1 : {con}) [spr].sta1 = sta ➔ tv
 true ➔ fv

Note that in the first case, since sta1 : {con} and all conditions are error transparent by definition, sta1 can’t

carry an error. This means that spr with input sta terminates cleanly. Also sta can’t carry an error since

specified programs are error transparent.

The situation in the second case is different. Here we start from an input state that satisfies con, and

therefore must be error free, but terminal states may carry errors.

Since algorithmic conditions are two-valued77 they are unambiguously identified by their truth domains.

Consequently their equivalent definitions are following :

{spr @ con} is the set of all input states that cause spr to terminate cleanly with output states

that satisfy con,

{con @ spr} is the set of all output states of spr for input states that satisfy con.

Algorithmic condition may be not computable since the termination property of programs is not decidable.

The following obvious equalities also hold (for the definition of ‘●’ see Sec. 2.7):

{spr @ con} = [spr] ● {con}
{con @ spr} = {con} ● [spr]

At the end we assume that the domain Condition is closed under both operations of building algorithmic

conditions. It means, in particular, that conditions in algorithmic conditions may be algorithmic themselves.

9.3 Metaconditions

9.3.1 Basic categories of metaconditions

Metaconditions describe semantic properties of conditions, specified programs and their components. Syntac-

tically, they do not belong to the validating language Lingua-V but to the metalanguage Lingua-MV (cf.

Sec. 9.1). Each metacondition is either true or false, which means that the denotations of metaconditions are

classical logical values tt or ff.

We assume that the language of metaconditions will be closed under classical connectives and, or, not
and implies. Atomic metaconditions, and their meanings, are defined as follows:

con-1  con-2 iff(def) {con-1} ⊆ {con-2} stronger than; metaimplication
con-1  con-2 iff(def) {con-1} = {con-2} weakly equivalent

con-1 ⊑ con-2 iff(def) [con-1] ⊆ [con-2] less defined

con-1 ≡ con-2 iff(def) [con-1] = [con-2] strongly equivalent

The relations, i.e., , ⊑,  and ≡ will be called metapredicates. To better understand their nature let’s see

the following examples, where we assume that the evaluation of the square root √𝑥
2

 generates an error if x is

not a nonnegative real number:

x>0 and √𝑥
2

 > 2 ≡ x > 4 if x is not a real-number variable, then both sides generate the same error,

√𝑥
2

 > 2  x > 4 but ≡ does not hold,

√𝑥
2

 > 4  x > 3 but neither  nor ⊑ holds.

If we assume that for negative x function √𝑥
2

 is undefined rather than generates and error, then the following

relation holds:

√𝑥
2

 < 2 ⊑ x < 4 but neither ≡ nor  holds,

77 We could have made them three-valued, but we do not need to do so, since in using algorithmic conditions we shall
refer to their truth domains only.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 177

The following rather obvious relationships hold between metapredicates78:

con1 ≡ con2 is equivalent to con1 ⊑ con2 and con2 ⊑ con1
con1  con2 is equivalent to con1  con2 and con2  con1
con1 ≡ con2 implies con1  con2
con1 ≡ con2 implies con1 ⊑ con2
con1  con2 implies con1  con2

It is important to understand the difference between three implication-like constructors that belong to three

different logical and linguistical levels:

1. implies : Condition x Condition ⟼ Condition — implication in Lingua-V,

2.  : Condition x Condition ⟼ {tt, ff} — metaimplication in Lingua-MV,

3. implies : {tt, ff} x {tt, ff} ⟼ {tt, ff} — (usual) implication in MetaSoft

Using metaimplications and algorithmic conditions, we can easily express the total and the partial correctness

of a specprogram spr for a precondition prc and a postcondition poc:

prc  spr @ poc clean total correctness

prc @ spr  poc partial correctness

As we see, spr @ poc is the weakest total precondition for spr and poc, and prc @ spr is the strongest par-

tial postcondition79 for spr and prc .

In our future rules of the development of correct programs we shall use another category of Lingua-MV

called metaprograms that express of specified programs and are of the form

pre prc : spr post poc

Their meaning is defined in an obvious way:

pre prc : spr post poc iff (def) prc  spr @ poc

Note that since our conditions have been assumed error-transparent (Sec. 9.2.1), clean total correctness in-

sures non-abortion.

In an analogous way we define the categories of metainstructions, and metadeclarations, and, in general,

metacomponents of specprograms.

The notion of total correctness with clean termination was defined by Andrzej Blikle in [28]. It is different

from total correctness considered by other authors (cf. [4],[5], [6], [8], [10], [50] or [51]), where programs

never generate errors, i.e., never abort. In the evaluation of our programs, error messages may be raised, but

if a program is correct, this will not happen.

A special category of metaconditions will be used in the development of while-do-od instructions (Sec.

9.4.6) and include metacondition of the form:

limited replicability of sin if con

This metacondition is true if there is no infinite sequence of states sta-1, sta-2,… such that for all i = 1,2,…

[con].sta-i = tv
sta-(i+1) = [sin].sta-i

Cf. limited replicability of a function defined in Sec. 8.7.2.

78 It is worth noticing that on the ground of our non-classical calculus of conditions we have two concepts of satisfiability
― strong satisfiability (con ≡ TT) con is always true, and weak satisfiability (con ⊑ TT) con is never false. Readers
interested in logics based on these concepts are referred to [65].

79 These concepts are due to Edsger W. Dijkstra (see [50] and [51]).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 178

9.3.2 Properties of metapredicates

This section includes a list of lemmas which are useful in the development of correct metaprograms.

Lemma 9.3.2-1 Relations ≡ and  are both equivalences, i.e., they are reflexive, symmetric, and transitive.

Lemma 9.3.2-2 Strong equivalence is a congruence wrt and, or and not, i.e., the replacement of a

subcondition of a condition by a strongly equivalent one result a condition strongly equivalent to the initial

one.

Lemma 9.3.2-3 Weak equivalence is a congruence wrt and and or.

Weak equivalence is not a congruence wrt negation which means that

con1  con2 does not imply not con1  not con2

For instance, although

√𝑥
2

 > 2  x > 4

is satisfied, the metacondition

√𝑥
2

 ≤ 2  x ≤ 4

is not, since for x = −1 the right-hand-side equation evaluates to tv, but on the left-hand side, we have an error.

Lemma 9.3.2-4 The operators and and or are strongly associative, i.e.

(con1 and con2) and con3 ≡ con1 and (con2 and con3)
(con1 or con2) or con3 ≡ con1 or (con2 or con3)

Of course, they are also weakly associative since strong equivalence implies weak equivalence.

Lemma 9.3.2-5 The operator and is strongly left-hand-side distributive wrt to or and vice versa, i.e..

con1 and (con2 or con3) ≡ con1 and con2) or (con1 and con3)
con1 or (con2 and con3) ≡ con1 or con2) and (con1 or con3)

However, both operators are not strongly right-hand-side distributive. Indeed (not quite formally written):

(tv or ee) and fv = fv but (tv and fv) or (ee and fv) = ee
(fv and ee) or tv = tv but (fv or tv) and (ee or tv) = ee (9.3.2-1)

Lemma 9.3.2-6 The operator and is weakly left-hand-side distributive wrt or i.e.

(con1 or con2) and con3  (con1 and con3) or (con2 and con3)

However, or is not even weakly left-hand-side distributive wrt and which can be seen in (9.3.2-1).

Lemma 9.3.2-7 The de Morgan’s laws for and and or and for the negation of quantifiers are satisfied with

strong equivalence.

Lemma 9.3.2-8 Conjunction is weakly commutative, i.e.,

con1 and con2  con2 and con1

However, conjunctions are not strongly commutative, and the disjunction is not even weakly commutative,

since:

tv or ee = tv but ee or tv = ee

Lemma 9.3.2-9

If con1  con2 then con1 and con2 ≡ con1.

Besides the two-argument metapredicates, we also define three-argument metapredicates which will be used

in the development of correct metaprograms:

con1 ≡ con2 whenever con means con and con1 ≡ con and con2
con1  con2 whenever con means con and con1  con and con2

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 179

con1  con2 whenever con means con and con1  con and con2

In all these cases, we say that con constitutes a logical context or simply a context for the metapredicate that

follows. We shall also say that the equivalence con1 ≡ con2 is satisfied under the condition con and analo-

gously for a weak equivalence and metaimplication. E.g. the following metapredicates are satisfied:

n > x2 ≡ √𝑛
2

 > x whenever (n ≥ 0 and x ≥ 0)

n > x2  √𝑛
2

 > x whenever x ≥ 0

The context is usually a condition in whose range we want to replace one condition by another one.

All considerations presented here were published by A. Blikle in the decade 1980 in [28] and [31], and the

development of these ideas towards three-valued deductive theories was investigated in a paper [65] by B.

Konikowska, A. Tarlecki and A.Blikle.

9.3.3 Metaconditions associated with programs

As we are going to see in Sec. 9.4.1, in the development of correct metaprograms the development of pre-

and postconditions is equally vital as the development of specprograms. To systematise the development of

conditions we shall define three groups of metaconditions depending on specprograms, metaprograms and

specification languages respectively. The first group describes behavioural properties of conditions versus

specprograms:

con resilient to spr if con @ spr  con —
con is resilient to spr, if its satisfaction is not

violated by spr,

con consumed by spr if con  spr @ not con —
con is consumed by spr, if it is like a raw ma-

terial that assures execution but disappears

after it,

con catalyzing for spr if con  spr @ con —
con is catalysing for spr, if it is like a chemi-

cal catalyzer — it assures execution but is not

consumed,

con essential for spr if con ≡ spr @ NF —
con is essential for spr if it is the weakest pre-

conditions that ensures a clean termination of

spr.

Since specprograms are by definition deterministic (represent functions), catalyzing conditions are resilient,

but not vice versa. To illustrate the defined metaconditions consider a simple metaprogram:

pre (x is free) and (var y is integer with value < 3) :
let x be real with value > 10 tel;
x := 17,3
…

post (var x is real with value > 10) and (var y is integer with value < 3) and (x = 17)

The following relations hold:

• var y is integer with value < 3 is resilient to the declaration of x, but not catalyzing,

• x is free is consumed by the declaration of x and is essential for it.

• var x is real with value > 10 is catalyzing for x := 17,3.

Note that the catalyzing condition for the assignment is not essential, since is not the weakest. The essential

condition for x := 17,3 is var x is real, i.e., with a trivial yoke.

It is to be emphasized that although we considered a metaprogram in our example, all illustrated properties

concern relations between a condition and a specprogram, and do not depend on the fact that our exemplary

metaprogram is correct.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 180

Our second group of metaconditions concerns the satisfaction of conditions against the executions of cor-

rect metaprograms, i.e., against the sequences of consecutive states of such executions. To avoid talking

about sequences of states, that would lead to an alternative semantics of programs80, we introduce an auxilia-

ry concept of a cut of a specprogram.

Let AlpLin-V be an alphabet of Lingua-V, i.e., a finite set of characters such that all metaprograms are

words over AlpLin-V. Let

phr : Phrase = AlpLin-V*

be the set of all words over this alphabet that we shall call phrases. By a cut of a metaprogram

mpr = pre prc : spr post poc

we mean any pair of phrases of the form (pre prc : pre, pos post poc), called respectively the head and the

tail of this cut, such that:

pre prc : pre ; pos post poc = mpr.

and the semicolon is not “located” in a body of a procedure declarations (we skip a formal definition of “lo-

cation”). Intuitively, cuts identify “global” semicolons in metaprograms. Note that we do not exclude cuts

through class declarations or structured instructions, but we exclude cuts though procedure bodies.

It is evident that cuts of a given metaprogram may be linearly ordered by a relation earlier/later. We skip

its formal definition. We say that a condition con is satisfied in cut (pre prc : pre, pos post poc) if the met-

aprogram:

pre prc : pre ; asr con rsa ; pos post poc

is correct. Note that in such a case mpr must be correct as well.

Having defined cuts, we are ready to define temporal properties of conditions versus correct metapro-

grams. Analogously as in the case of behavioural properties we define corresponding metaconditions be-

tween conditions and metaprograms. Let

mpr = pre prc: spr post poc

be a correct metaprogram. We say that:

con primary in mpr if
prc  con, i.e. if con is satisfied at the entrance of the program (and

possibly later as well),

con induced in mpr if
there exists a cut of mpr such that con is satisfied in this cut; an induced

condition must be eventually satisfied,

con hereditary in mpr if
con once satisfied in a cut, will be satisfied in all later cuts; note that a

condition that is never satisfied is hereditary,

con va-hereditary in mpr if
con once falsified, will be falsified in all later cuts; con is va-hereditary

iff not con is hereditary

con perpetual in mpr if
con is primary and hereditary at the same time, i.e. if it is satisfied in all

cuts of mpr.

80 Such a semantics was introduced and investigated by Andrzej Blikle in [23].

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 181

Fig. 9.3-1 Temporal categories of conditions

Note that in all five cases we define a relation between a condition and a correct metaprogram. We do not

consider temporal properties of conditions against incorrect metaprograms. To illustrate the introduced con-

cepts let’s return to our example of a metaprogram. In this program:

x is free — is primary and va-hereditary,

var y is integer with value < 3 — is perpetual, since a type once declared remains declared forever,
var x is real with value > 10 — is induced and hereditary,

x = 17,3 — is induced but not necessarily hereditary.

Note that condition x = 17 maybe in this program hereditary or not, depending whether the value of x is later

changed. The situation with var x is real with value > 10 is different. It is hereditary in every correct metapro-

gram since a variable, once declared, can’t be redeclared anymore.

The properties of conditions defined so far describe relations between conditions and spec- or metapro-

grams, i.e., are program dependent. Our last group of metaconditions describe properties of conditions that

are program independent, i.e. satisfied in all programs of a Lingua-V.

con is immunizing if con hereditary in mpr for every mpr,

con is immanent if the value of con is never false, although may be undefined or be an error,

con is underivable if
whenever pre prc : spr pos poc is correct and poc  con, then

prc  con.

In Lingua-V, typical immunizing conditions are induced by declarations, but if we allow variable redeclara-

tions, they would not be.

Typical immanent conditions describe properties of mathematical beings appearing in our language, such

as, e.g.,

x + y = y + x

where + denotes an integer addition.

A condition is underivable, if it can’t be induced in a metaprogram, unless it is included in the precondi-

tion of this program. Typical underivable conditions in Lingua-V are conditions of the pattern ide is free81.

At the same time, since they are essential for declarations, they have to be assumed in the precondition of the

program. In practice, in the process of program development, whenever we intend to add a declaration, we

have to add an appropriate freeness condition to the precondition of this program, and then to “propagate” it

(due to its resilience) to the pre- and postconditions of all preceding programs. More on this issue in Sec.

13.1.

81 We may also think abut “less trivial” underivable conditions such as, e.g., conditions describing properties of data-
bases, that can’t be created by Lingua programs, but at the same time can be processed by such programs.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 182

In the process of a metaprogram derivation described in Sec. 9.4.1, underivable conditions and hereditary

conditions play contrasting roles:

• Whenever we need an underivable condition in a precondition of an intermediate metaprogram, we

have to add it to the precondition of the previous program and, therefore, to the precondition of the ini-

tial program.

• Whenever we induce a hereditary condition in a postcondition of an intermediate program, we can add

it to the postcondition of the next program, and consequently to the postcondition of the final program.

We even have to do it, if we want our postcondition to be the strongest one.

As we see, in the process of a metaprogram development we, on one hand, incrementally create the future

precondition of this program by adding to it underivable conditions that we shall need later, and on the other

— we incrementally create the future strongest postcondition of the program by adding to it hereditary condi-

tions.

At the same time we have “to keep a repository” of immanent conditions that we shall need to prove some

facts, e.g., metaimplications, in developing our metaprograms. More about a “logistics” of conditions in Sec.

13.1

9.4 Metaprogram constructions rules

9.4.1 A birds-eye view on a metaprogram development

Due to our assumption in Sec. 6.3 every “completed” metaprogram is of the form

pre prc: spp ; open procedures ; sin post poc

where spp is a specified program preamble and sin is a specified instruction (see Sec. 9.2.6). This form may

be “unfolded” to

pre prc :
atp-1 ; … ; atp-n ; open procedures ; asi-1 ; … ; asi-k

post poc

where

• atp-i’s are atomic preambles, i.e., single declarations of variables or of classes, or atomic specinstruc-

tions,

• asi-i’s are atomic specinstructions, i.e., instructions listed in Sec. 7.3.7, except the last one, plus asser-

tions; note that structured instructions such as while-do-od and if-then-else-fi are regarded as atomic,

although their “internal instructions” may be quite complex.

Consequently, the process of a metaprogram development may be split into a sequence of steps, each build-

ing one atomic metaprogram:

pre prc-1: atp-1 post poc-1
pre prc-2: atp-2 post poc-2
…
pre prc-n : open procedures post poc-n
pre prc-(n+1) : asi-1 post poc-(n+1)
…
pre prc-(n+k+1) : asi-k post poc-(n+k+1)

where

prc  prc-1
poc-i  prc-(i+1) for i = 1,2,…,k+n
poc-(n+k+1)  poc

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 183

In this process we are building not only successive imperative components or our future program, but also

successive pre- and postconditions. Observe that although the composition of imperative components may be

left to the end of the process, pre- and postconditions have to be build incrementally “as we go”. This means

that whenever we are creating a next metaprogram

pre prc-i: atp-2 post poc-i

we have to insure that the former postcondition metaimplies prc-i. In practice it must be either equal prc-i or

of the form val and prc-i. Whatever we want to say about programs must be expressed by derivable condi-

tions or included in the precondition of the program. It is why the derivability, resilience and heredity of con-

ditions are such vital issues in program development.

Since atomic metaprograms will be eventually combined into a final metaprogram in using Rule 9.4.2-2,

we may restrict our further considerations to the development of atomic metaprograms. Note in this place

that atomic metaprograms do not need to be simple. A metaprogram with a single assignment instruction is

simple, but developing a while loop or a class declaration with recursive procedures may be quite challenging

task (cf. Sec. 9.4.4.2).

We in the sequel shall define three categories of rules for the derivation of correct metaprograms:

• correctness preserving rules describing transformations of programs which preserve their correctness

but possibly change their meanings, i.e., the denotations of their specprograms (Sec. Sec. 9.4.2 and

9.5),

• universal rules concerning all metaprograms (Sec. 9.4.3),

• specific rules concerning declarations (Sec. Sec. 9.4.4 and 9.4.5) and instructions (Sec. 9.4.6).

Specific rules may be atomic, i.e., claiming an (unconditional) correctness of a metaprogram, or implicative,

i.e., claiming that if some metaconditions are satisfied, then some metaprograms are correct.

9.4.2 Correctness-preserving modifications of metaprograms

Let’s recall (cf. Sec. 9.2.6) that all our specprograms are of the form

spp ; open procedures ; sin

where spp is a specprogram preamble, and sin is a specinstruction (both may be trivial).

Lemma 9.4.2-1 If

pre prc : spp ; open procedures ; sin post poc

is correct, then in any execution of spp;open procedures; sin that starts with a state satisfying prc:

1. none of spp, sin, poc generates an error,

2. states in {prc} do not bind identifiers that are (going to be) declared in spp,

3. all assertions in sin are satisfied,

4. the terminal state does not carry an error.

Note that open procedures never generates an error, and, therefore, we do not need to mention this fact in our

lemma.

Lemma 9.4.2-2 If

pre prc : spp ; open procedures ; sin post poc

is correct and sin1 has been created from sin by the removal of an arbitrary number of assertions or on-

assertion-declarations, then the metaprogram

pre prc : spp ; open procedures ; sin1 post poc

is correct as well.

Lemma 9.4.2-3 The replacement in a correct metaprograms its pre- or post-condition or a condition in an

assertion by a weakly equivalent condition, does not violate the correctness of the program.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 184

For pre- and post-conditions the proof is obvious. For assertions it follows from the fact that if

con1  con2 i.e. {con1} = {con2}

then

[con1].sta = tv iff [con2].sta =tv

In particular, this lemma implies that on the level of conditions (but not of boolean expressions of the pro-

gramming layer!) we can apply all the lemmas of Sec. 9.3.2 that concern weak equivalence.

Lemma 9.4.2-4 The replacement in a correct metaprogram of any boolean expression vex in an instruction

by a boolean expression vex1 that is stronger defined (i.e., such that vex ⊑ vex1) does not violate the cor-

rectness of the metaprogram.

If the source metaprogram is correct, then none of its boolean expressions generates an error, and wherever

vex is defined vex1 is defined as well, and has the same value. In particular we may replace any boolean

expression (and, of course, any conditions) by strongly equivalent ones.

9.4.3 Universal rules

First of our universal rules82, that we shall call the main rule, bases on our earlier assumption about the gen-

eral structure of metaprograms and is the following:

Rule 9.4.3-1 The basic rule

(1) pre prc : spp post (de-con and in-con)
(2) pre (de-con and in-con) : open procedures post (de-con and op-con and in-con)
(3) pre (de-con and op-con and in-con) : sin post (de-con and op-con and si-con)

pre prc:
 spp ; open procedures ; sin
post (de-con and op-con and si-con)

In this rule:

• spp is a specified program preamble,

• de-con is a hereditary condition induced by declarations included in spp,

• in-con is a condition induced by instructions included in spp,

• op-con is a hereditary condition induced by open procedures,

• sin is a specified instruction,

• si-con is a condition induced by sin.

Although our rule is quite straightforward, we decided to show it, since it illustrates a way in which a final

postcondition of a metaprogram is constructed incrementally. This rule bases on the observation from Sec.

9.3.3 that postconditions induced by declarations are immunizing in Lingua-V, and also on an obvious fact

that condition in-con is resilient to open procedures. In the third step of our program development, in-con in

the precondition is modified to si-con in the postcondition. This modification describes “the real effect” of

the execution of our program.

Note now that whereas an incremental construction of a final postcondition is explicit in our rule, the pro-

cess of building precondition is not. It is only implicit in the fact that all declaration-induced conditions —

that are necessary to make our programs run cleanly — need some underivable preconditions to be induced.

We have to make the latter primitive in our metaprogram, and, of course, they will be temporary. Each of

them will cease to be satisfied when it is “consumed” by an associated declaration.

82 Mathematically program-construction rules described in this and the following sections are just lemmas as in preced-
ing sections. We call them “rules” for historical reasons, but must remember that they are not “assumed” as in
Hoare’s or Dijkstra’s logic, by have to be proved (unless are obvious).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 185

Our main rule is based on the following universal rule for sequential composition:

Rule 9.4.3-2 Sequential compositions

pre prc-1: spr-1 post poc-1
pre prc-2: spr-2 post poc-2
poc-1  prc-2

pre prc-1: spr-1; spr-2 post poc-2
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2
pre prc-1: spr-1; asr prc-2 rsa; spr-2 post poc-2

Proof is immediate from Rule 8.7.1-1. Under the line we have a conjunction of metaconditions which means

that our rule represent three single rules. The second and the third version will be used in transformational

programming sketched in Sec. 9.4.6.6.

Rule 9.4.3-3 Strengthening preconditions

pre prc : spr post poc
prc-1  prc

pre prc-1 : spr post poc

Rule 9.4.3-4 Weakening postconditions

pre prc : spr post poc
poc  poc-1

pre prc : spr post poc-1

Rule 9.4.3-5 Conjunction and disjunction of conditions

pre prc-1 : spr post poc-1
pre prc-2 : spr post poc-2

pre (prc-1 and prc-2) : spr post (poc-1 and poc-2)
pre (prc-1 or prc-2) : spr post (poc-1 or poc-2)

Rule 9.4.3-6 Propagation of resilient conditions

pre prc: spr post poc
con resilient to spr

pre (prc and con) : spr post (poc and con)

The proofs of these rules follow immediate from the rules 8.7.1-3, 8.7.1-4, 8.7.1-5 and 8.7.1-6 respectively.

9.4.4 Rules for metadeclarations

There are four categories of atomic declarations (Sec. 6.7.1) to be considered from the perspective of pro-

gram-construction rules:

• declarations of variables,

• enrichments of covering relations,

• declarations of classes,

• global openings of procedures.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 186

In all these cases postconditions of corresponding metadeclarations are built in an incremental way. We shall

discuss them in the subsequent sections.

9.4.4.1 Variable declarations

The rule for variable declarations is nuclear and is the following:

Rule 9.4.4-1 Variable declaration

pre (ide is free) and (tex is type)
let ide be tex with yex tel

post var ide is tex with yex

The proof is obvious. The rule for class attribute declaration is analogous, but belongs to a different category

since attribute declarations are executed as components of class declarations.

9.4.4.2 Enrichment of a covering relation

An enrichment of a current covering relations add new pairs of types to this relations and modifies cov-

expression accordingly. This leads us to the following rule:

Rule 9.4.4-2 Enrichment of a covering relation

pre consistent(tex1 , tex2) and (coe is current):
enrich-cov(tex1, tex2)

post ((tex1, tex2) ; coe) is current

The situation with condition coe is current is similar to that of ide is free. It is not derivable and va-

hereditary (Sec. 9.3.3). In turn the derivability of consistent(tex1 , tex2) must be insured during the process

of program derivation, depending on what tex1 and tex2 are.

9.4.4.3 Class declarations

A general scheme of a class metadeclaration is the following:

pre prc:
class ide parent cli with ctr-1; … ; ctr-k ssalc (9.4.4-1)

post poc

where ctr-i’s are atomic class transformers and cli is a class indicator which may be of one of two following

forms:

cli : Identifier
cli = empty-class

Our goal in the development of this metadeclaration consists in establishing:

• a precondition prc that guarantee a clean execution of our declaration,

• a postcondition poc that describes the effect of this declaration.

To realize this goal let’s rewrite (9.4.4-1) to an equivalent form where class transformers are replaced by

anchored class transformers:

pre prc :
class ide parent cli with skip-ctr ssalc ;
ctr-1 in ide ;
…
ctr-k in ide

post con

Given this form we can formulate a scheme of a rule analogous to the main rule in Sec. 9.4.2:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 187

Rule 9.4.4-2 Class declaration

(1) pre prc : class ide parent cli with skip-ctr ssalc post pa-poc
(2) pre pa-poc : ctr-1 in ide post (pa-poc and cr-poc-1)
(3) pre (pa-poc and cr-poc-1) : ctr-2 in ide post (pa-poc and cr-poc-1and cr-poc-2)
(4) ...

pre prc:
class ide parent cli with ctr-1; … ; ctr-k ssalc

post poc

The proof of this rule is immediate from Rule 9.4.2-1 for sequential composition. What remains to be done

now, is to define rules for all categories of metadeclarations that may appear above the line.. First of them

concerns a declaration of a funding class and is the following:

Rule 9.4.4-3 Declaration of a funding class

pre : (cl-ide is free) and (cli is class)
class cl-ide parent cli with skip-ctr ssalc

post ide child of cli

Given this initiation rule we can proceed to the rules for anchored class transformers. To save the space (and

the resilience of our readers!), we will show only selected examples of such rules. We start from the rule for

adding an attribute. It is similar to Rule 9.4.4-1 for variable declaration.

Rule (9.4.4-4) Adding an abstract attribute

pre (at-ide is free) and (cl-ide is class) and (tex is type) :
let at-ide be tex with yex as pst tel in cl-ide

post att at-ide is tex with yex in cl-ide as pst

Rule 9.4.4-5 Adding a type constant

pre (tc-ide is free) and (cl-ide is class) and (tex is type) :
set tc-ide be tex tes in cl-ide

post tc-ide is tex

Rule 9.4.4-5 Adding an imperative pre-procedure declaration

pre (pr-ide is free) and (cl-ide is class)
pr-ide (val my-fpc-v ref my-fpc-r) my-body in cl-ide;

post pre-proc pr-ide (val my-fpc-v ref my-fpc-r) my-body imperative in cl-ide

The postcondition of the resulting metadeclaration has been defined in Sec. 9.2.5. The soundness of this rule

is evident from the definition of the applied transformer (Sec. 6.7.4.6). Note that all we need for a pre-

procedure declaration to execute cleanly is that its hosting class cl-ide has been declared, and its name pr-ide

is fresh. Rules for functional procedures and object constructors are, of course, analogous.

9.4.5 The opening of procedures

Our last rule associated with declarations concerns the global declaration open procedures. In this case we

can’t formulate one universal rule since the number of class declarations in a program, and the numbers of

procedure declarations in each class are unlimited. All we can do, is to formulate the following scheme of a

nuclear rule.

Rule 9.4.5-1 The opening of procedures

pre
 pre-proc pr-ide-11 (val fpc-v-11 ref fpc-r-11) body-11 imperative in cl-ide-1 and

pre-proc pr-ide-12 (val fpc-v-12 ref fpc-r-12) body-12 imperative in cl-ide-1 and
…

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 188

pre-proc pr-ide-21 (val fpc-v-21 ref fpc-r-21) body-21 imperative in cl-ide-2 and
pre-proc pr-ide-22 (val fpc-v-22 ref fpc-r-22) body-22 imperative in cl-ide-2 and
…
open procedures

post
cl-ide-1.pr-ide-11 opened,
cl-ide-1.pr-ide-12 opened,

 …
cl-ide-2.pr-ide-21 opened,
cl-ide-2.pr-ide-22 opened,

 …

It is to be emphasized that whereas in the precondition we have a conjunction of single conditions, the post-

condition is one atomic condition that expresses a property of a tuple of procedures. Such a construction is

necessary, since global declarations declare tuples of procedures in “one step”. Therefore, our postcondition

should express the fact that procedures assigned to procedure indicators in the current state are identical with

procedures created from the corresponding pre-procedures.

9.4.6 Rules for metainstructions

9.4.6.1 Rules for composed instructions

Rule 9.4.6-1 Conditional branching if-then-else-fi

pre (prc and vex) : sin1 post poc
pre (prc and not vex) : sin2 post poc
prc  (vex or (not vex))

pre prc : if vex then sin1 else sin2 fi post poc

Here the two-sided vertical arrow represents two implications: top-to-bottom and a bottom-to-top. The me-

taimplication above the line guarantees that whenever the precondition is satisfied, the evaluation of boolean

expression vec terminates, and yields a boolean value rather than an error. Note that in a two-valued logic

this metadeclaration would be a tautology, and therefore is omitted.

The second rule corresponds to a while-do-od loop, where vex is a boolean expression, and inv is a condi-

tion called an invariant of the loop:

 Rule 9.4.6-2 Loop while-do-od

(1) pre (inv and vex) : sin post inv
(2) limited replicability of (asr vex rsa ; sin) if inv
(3) prc  inv
(4) inv  (vex or (not vex))
(5) inv and (not vex))  poc

pre prc : while vex do sin od post poc

The metacondition used in (2) has been defined in Sec. 9.3.1. Proof follows directly from rule Rule 8.7.2-6.

9.4.6.2 Rules for assignment instructions

In the case of assignment instructions, instead of formulating a rule “ready to be used”, we show a universal

rule and sketch a way of using it in concrete situations. This rule has a tautological character and is the fol-

lowing:

Rule 9.4.6-1 @-tautology

pre sin @ con

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 189

 sin
post con

The proof of this rule follows directly from the definition of the denotation of sin @ con in Sec. 9.2.7. The

idea of using this rule consists in a replacement of the algorithmic precondition by a weakly equivalent one

which is not algorithmic. To see, how it works consider as an example the following tautological metain-

struction:

pre x := y+1 @ 2*x < 10
 x := y+1 (9.4.6.2-1)
post 2*x < 10

where we assume that the arithmetical operators +, * and < are integer operations. It is implicit in this rule

that:

x has been declared as an integer variable and (therefore) its value is an integer

y analogously

x+1 does not generate an error

2*x analogously

Under this assumption we can easily prove the following weak equivalence (note that a strong equivalence

does not hold):

x := y+1 @ 2*x < 10  (x is integer) and 2*(y+1) < 10 (9.4.6.2-2)

Due to our assumptions about arithmetical operators the left-hand side of the equivalence implies that x and y

are integer variables. Since on the right-hand side x does not appear in the inequality, we have to add an ex-

plicit claim about its type. For simplicity we do not consider the possibility of an overload, and we assume

that the types of both variables are yokeless, i.e. that their yokes are TT.

By Rule 9.4.3-3, the precondition of (9.4.6.2-1) may be replaced by the right-hand side of (9.4.6.2-2)
which leads us to the following metainstruction, which is no more a tautology:

pre (x is integer) and 2*(y+1) < 10
 x := y+1
post 2*x < 10

This step completes the development of a correct metaprogram.

Now, let’s apply Rule 9.4.6-1 in an object-oriented context. Consider the following initial tautological me-

tainstruction:

pre x.q := y.p.r + 1 @ 2*x.q < 10
 x.q := y.p.r + 1
post 2*x.q < 10

where x, y and y.p point to objects. Now, we can prove the following weak equivalence:

x.q := y.p.r + 1 @ 2*x.q < 10

 

(type of x.q accepts type of y.p.r+1) and 2*(y.p.r+1) < 10

Note that it is implicit in (i.e. is metaimplied by) the right-hand side of this equivalence that x, y and y.p point

to objects, and that all involved expressions evaluate cleanly. Basing on this equivalence we can claim the

correctness of the following metainstruction:

pre (type of x.q accepts type of y.p.r) and 2*(y.p.r+1) < 10
 x.q := y.p.r + 1
post 2*x.q < 10

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 190

9.4.6.3 Rules for imperative procedure calls

Construction rules formulated so far might be seen as tools for handling the following programming tasks:

A. given a postcondition poc of a future metaprogram,

B. create a specified program spr, and a precondition prc such that the following metaprogram is cor-

rect:

pre prc: spr post poc

In the case of procedure calls the task is different. This time,

C. given a postcondition poc-call of a future procedure call,

D. create a procedure declaration

proc myProc (val fpa-v ref fpa-r) begin my-body end, (9.4.6.3-1)

and a precondition prc-call such that the following metainstruction is correct:

pre prc-call :
call MyClass.myProc(val apa-v ref apa-r) (9.4.6.3-2)

post poc-call.

Of course, in the realization of this task, the major subtask and challenge consists in developing a correct

metaprogram

pre prc-body:
my-body

post poc-body.

that includes the body of our future procedure. In the realization of D. we have to develop the following ele-

ments of the future declaration and call:

1. a procedure body my-body,

2. conditions prc-body and poc-body, such that

pre prc-body: my-body post poc-body
 is correct,

3. two lists of formal parameters fpa-v and fpa-r,
4. two lists of actual parameters apa-v and apa-r,
5. a precondition of the call pre-call such that (9.4.6.3-2) is correct.

We shall try to figure out what relationships between the expected elements in 1. − 5. should hold to make

(9.4.6.3-2) satisfied.

In the first place the precondition of the call must guarantee that procedure myProc has been declared in

MyClass, and that it has been opened. This prerequisite may be expressed by two following metaimplica-

tion:

prc-call  myProc (val fpa-v, ref fpa-r) begin my-body end imperative in MyClass

prc-call  procedure MyClass.myProc opened

Both conditions in these metaimplications were defined in see Sec. 9.2.5. It is implicit in the first one that

MyClass has been declared.

The third fact that prc-call must guarantee is that the passing of actual parameters to formal parameters

will execute cleanly, and that the resulting state will satisfy prc-body. To express this fact we shall use algo-

rithmic condition (9.2.5-1) defined in Sec. 9.2.5, and request the following metaimplication:

prc-call  pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass @ prc-body

There is, however, one technical problem hidden in this request. When function pass-actual defined in Sec.

6.6.3.4 is generating a local-initial state, this state is getting a declaration-time environment dt-env and a

call-time store (cf. Sec. 6.6.3.2). In turn, when we evaluate prc-call we are dealing with a call-time environ-

ment ct-env, rather than declaration-time environment dt-env. In this place we should recall that pass-

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 191

actual “uses” the environment exclusively to compute the types of formal parameters, and the types declared

in ct-env are the same as types declared in dt-env, which, in turn, is a conclusion of our assumption (see Sec.

6.3) that in programs there are no declarations that would follow the opening of procedures. Consequently,

our metaimplication describes adequately our expectations.

The third, and the last fact that we have to guarantee, is that the satisfaction of postcondition poc-body in

a local terminal state lt-sta will guarantee:

a. that the return of references of formal parameters to actual parameters will be executed without an er-

ror message,

b. that after the return of parameters poc-call will be satisfied in the global terminal state.

The requirement b. may be expressed by the following metaimplication:

poc-body[fpa-r/apa-r]  poc-call

where poc-body[fpa-r/apa-r] denotes poc-body, where each formal reference-parameter has been replaced

by the corresponding actual parameter. Note that for every formal parameter there is exactly one actual pa-

rameter (although not necessarily vice versa).

To express requirement a. we have to cope with another technical problem such that the references of ac-

tual parameters have to accept the values of corresponding formal parameters in the context of the declara-

tion-time covering relation dt-cov, i.e. in the declaration-time environment. By the assumption that all decla-

rations in our programs precede the openings of procedures (Sec. 6.3), and therefore also procedure calls, we

can claim that this relation equals the call-time relation ct-cov, but still we have to express a property of a

local-terminal state in referring to the cov-relation of a “remote” state (see. Fig. 6.6-3). Note in this place that

local-terminal relation may be different from (global) call-time relation since an extension of this relation

might have taken place in the body of our procedure.

What we have to do in this situation, is to “recall” ct-cov, “remembered” in a cov-expression coe that

was adequate at the entrance to the call, i.e., that satisfies metaimplication

prc-call  coe is adequate

In practice, prc-call will „conjunctively include” condition coe is adequate. Given the call-time coe we can

request the metaimplication

poc-body  fpa-r accepts apa-r in coe

which means that prc-body assures a clean execution of passing reference parameters. Summing up our con-

siderations, we may claim the soundness of the following rule:

Rule 9.4.6.3-1 A call of an imperative procedure

(1) prc-call  myProc (val fpa-v ref fpa-r) my-body imperative in MyClass
(2) prc-call  (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass) @ prc-
body
(3) prc-call  procedure MyClass.myProc is opened

(4) prc-call  coe is current
(5) prc-body  my-body @ poc-body i.e. pre prc-body : my-body post poc-body

(6) poc-body  fpa-r accepts apa-r in coe
(7) poc-body[fpa-r/apa-r]  poc-call

pre prc-call :
call MyClass.myProc (val apa-v ref apa-r)

post poc-call

Let us comment this rule.

The precondition of the call guarantees that:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 192

(1) A pre-procedure named myProc has been declared in MyClass and the denotation of its body is iden-

tical with [my-body] (cf. Sec. 9.4.6.3). Note that this condition does not say (!) that the body of our

procedure is my-body.

(2) The process of passing actual parameters to formal parameters terminates cleanly, and the output state

satisfies the precondition of the body.

(3) Procedure MyClass.myProc has been opened, which practically means that the input state is a “fol-

lower” of an output state of declaration open procedures. Note that in syntactically correct programs

metaimplication (3) is a consequence of (1) due to the rule (cf. Sec. 6.3) that no declarations follow

open procedures. However, we decided to put (3) into our rule, to make it context-independent. In oth-

er words, we attempt to express all assumptions necessary for the correctness of our procedure call in

terms of the properties of its input states.

(4) Covering expression coe describes adequately the covering relation of the call-time state of the proce-

dure.

The precondition of the body guarantees that:

(5) Every program whose denotation is [my-body] — hence, in particular, the body of our procedure —

when starting its execution with prc-body satisfied, terminates cleanly, and its output state satisfies

poc-body.

The postcondition of the body guarantees that:

(6) The process of returning formal parameters to actual parameters terminates cleanly.

(7) After the return of the references of formal reference-parameters to actual reference-parameters the

postcondition of the call will be satisfied.

9.4.6.4 The case of recursive imperative procedures

In Sec. 9.4.6.3 we have introduced a sound construction rule which we can use in the process of building a

procedure declaration with expected properties. In this process we have to “invent” such components of a

future procedure declaration that the future call of this procedure will be correct for a given postcondition,

and an “invented” precondition. Among seven metaimplications that we have to prove in order to ensure the

correctness of our call, the implication (5) states that the body of our procedure is correct. In practice, we

shall not prove (5) after having developed my-body, but we shall develop a correct metaprogram of the form:

pre prc-body
my-body (9.4.6.4-1)

post poc-body

Let’s try to figure out now, what happens, if my-body includes a (recursive) call of the future procedure? In

this case our rule is still adequate, but we can’t establish the correctness of (9.4.6.4-1) without assuming the

correctness of the future call:

pre prc-call :
call MyClass.myProc (val apa-v ref apa-r) (9.4.6.4-2)

post poc-call

In other words, in the case of recursion, we can’t first build (9.4.6.4-1) and then claim (9.4.6.4-2), but we

have to develop/prove them in a certain sense “in parallel”.

Further on, our procedure may call itself more than once in its body, and not necessarily directly, but also

via other procedures. There is, therefore, a potentially infinite number of different mutual-recursion configu-

rations that lead to an infinite number of corresponding construction rules. This situation may be compared to

the case of iterative programs with goto’s considered in Sec. 8.3. However, whereas in the latter case a way

out of the “labyrinth” of a variety of different programming structures was offered by structured program-

ming, an analogous solution for recursive procedures seems doubtful. In the case of recursion, we probably

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 193

have to treat each recursive structure separately using general rules described in Sec. 8.7.2. We will not delve

deeper into this problem, leaving it for further research. Instead, we shall analyze one simple example.

Let power be the name of a (future) recursive procedure to be declared in MyClass83, and let’s assume that

our task consists of making the following call correct (we use some obvious colloquializations):

pre prc-call
call MyClass.power(val a,b ref c) (9.4.6.4-3)

post var a,b,c are integer with value ≥ 0 and c=a^b

where prc-call is to be found. As a “candidate declaration” of our procedure declaration let’s take:

proc MyClass.power(val m, n integer ref k integer) k = m^n
 begin

if n = 0
then k := 1 (9.4.6.4-4)
else n := n-1 ; call MyClass.power(val m, n ref k); k:= k*m

 fi
end

and as a candidate for the precondition of the call let’s take:

prc-call = power (val m, n integer ref k integer) my-body imperative in MyClass and
var a,b,c are integer with a,b,c ≥ 0

where my-body is implicit in (9.4.6.4-4). To prove the correctness of (9.4.6.4-3) we shall use Rule 8.7.2-4

(Sec. 8.7.2). Let:

A = { prc-call }
B = { var a,b,c are integer with a,b,c ≥ 0 and c=a^b }

H = [asr b > 0 rsa] [b := b-1]
T = [c:= c*a]
E = [asr b = 0 rsa] [c := 1]
F = [call MyClass.power(val a,b ref c)]

To be able to claim (9.4.6.4-3) have to prove the following statements:

(1) (∀ Q) (AQ ⊆ B implies A(HQT) ⊆ B)
(2) AE ⊆ B
(3) A ⊆ FS

where Q denotes a denotation of an imperative program-component. We leave the details of this proof to the

reader.

9.4.6.5 The case of functional procedures

Analogously to imperative procedures, correctness statements about functional procedures describe the prop-

erties of their calls. In this case, however, the result of a call is not a state, whose properties may be described

by a condition, but a value. Consider the following (anchored) declaration of a functional pre-procedure:

fun funPower(val k, m, n) functional in MyClass
 begin

 let k be integer with value ≥ 0 tel
 call MyClass.power(val m, n ref k) (9.4.6.5-1)
 return 3*k+1
end

83 In this case we typeset power and MyClass in green Arial Narrow, since contrary to the case of Sec.9.4.6.3, now we

are talking about a concrete procedure, rather than about a pattern of a procedure.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 194

where MyClass.power is the procedure analyzed in Sec. 9.4.6.4. A possible correcness statemet describing a

property of of the call may be the following:

(funPower (val m, n ref k) begin body return integer end functional in MyClass) and (a, b ≥ 0) :

call funPower(a, b) = 3*(a^b)+1

where body is implicit in (9.4.6.5-1). This statement expresses the relationship between the input values of

actual parameters a, and b, and the value exported by the call. Note that we may write our statement in a

standard form with pre- and postcondition as:

pre funPower (val m, n ref k) begin body return integer end functional in MyClass and a, b ≥ 0:
skip-i

post call funPower(a, b) = 3*(a^b)+1

It is implicit in the postcondition that the call evaluates cleanly.

We shall not go into a discussion of building correct functional procedures, leaving it to future research. In

the same “spirit” we abandon a discussion of the construction of correct object constructors.

9.4.6.6 Jaco de Bakker paradox in Hoare’s logic

As was noticed by Jaco de Bakker (p. 108, Sec. 4 in [8]) and later commented by K. Apt in [4], on the ground

of Hoare’s logic one can prove the formula:

pre true : a[a[2]] := 1 post a[a[2]] = 1

which for same arrays a is not true. Indeed, if

a = [2,2].

then

a[2] = 2

hence the execution of the assignment

a[a[2]] := 1

means the execution of

a[2] := 1

which means that the new array is a = [2,1], and therefore a[a[2]] = a[1] = 2.

Let us observe, however, that Hoare’s problem results neither from having arrays in a language nor from

the admission of expressions like a[a[2]] but from an implicit assumption that whenever such an expression

appears on the left-hand-side of an assignment, it should be treated as a variable. As a matter of fact, for

many years, programmers used to talk about “subscripted variables” (in Algol 60 [7]) or “indexed variables”

(in Pascal [62]).

De Bakker’s problem with Hoare’s logic lies in an imperfect understanding of the meaning (the semantics)

of array variables84. In our language de Bakker’s paradox does not appear since the instruction of the form:

a.(a.2) := 1

would be syntactically incorrect. In that place, we write

a := change-in-arr a at a.2 by 1 ee

or colloquially

84 In the denotational model described by M. Gordon in [59] array-variables or indexed-variables are admitted on the
cost of a rather substantial complication of the model by distinguishing between left-values of expressions (locations)
and right-values of expressions (values).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 195

a := change-in-arr a by a.2 := 1 ee

Now, on the ground of constructions rules of Sec. 9.4 we can easily derive the following correct metapro-

gram:

pre a is arr-type number and a.1=2 and a.2=2
a := change-in-arr a by a.2 := 1 ee

post a.1=2 and a.2=1

9.5 Transformational programming

9.5.1 First example

In the previous section, we were dealing with rules allowing to build correct metaprograms out of correct

components. That was a situation analogous to an assembly line of, e.g., automobiles. In the present section,

we shall consider rules to be used in metaprogram transformations, when we want to change or to optimize

program functionality. In the examples that follow, we shall use some of the rules introduced earlier as well

as some others that we are going to formalize in Sec. 9.5.3. Let us start with an example of two obviously

correct metaprograms, where we assume that nnint is a predefined type of non-negative integers. Since all our

variables will be yokeless, we shall skip for simplicity the phrase ”with TT“.

pre x,n is nnint :
 x := 0;
 while (x+1)2 ≤ n
 do
 x := x+1
 od
post x = isrt(n)

pre x,n,m is nnint
 x := 0;
 while (x+1)*m ≤ n
 do
 x := x+1
 od
post x = iqt(n,m)

The first program computes an integer square root denoted by isrt(n), the other — an integer quotient denoted

by iqt(n). Each of these metaprograms is searching number-by-number through the set of nonnegative integers

in seeking the expected result. Returning to our automotive metaphor, we may say that both metaprograms

are driven by the same while-engine:

P1: pre x,k is nnint:
x := 0;
while x+1 ≤ k
do

x := x+1
od

post x = k

We can use this universal engine to drive two different “appliances”: an integer square root, or an integer

quotient. In each of these cases, we change the functionality of a program but preserve its correctness. Let us

show a simple universal method that can justify the correctness of the resulting metaprogram.

First observe that the correctness of P1 implies the correctness of P2, where we introduce an assertion

block (Sec. 9.2.6) including while instruction, and where k has been replaced by isrt(n):

P2: pre x,n is nnint :
x := 0;
asr x,n is nnint in

while x+1 ≤ isrt(n)
do

x := x+1
od

rsa

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 196

post x = isrt(n)

So far, our metaprogram looks a bit pointless since it uses isrt(n) to compute it. We shall, therefore, eliminate

that expression from the programming layer basing on a strong equivalence85:

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n is nnint

and applying Lemma 9.4.2-4 (Sec. 9.4.2), which allows replacing a boolean expression by a strongly equiva-

lent one. In our case, this equivalence holds only in the context specified by the whenever clause, and this

context is assured within the our assertion block.

As a result of the described transformation, we end up with a final metaprogram P3 where the assertion

(now not necessary) has been removed.

P3: pre x,n is nnint :
x := 0;
while (x+1)2 ≤ n

do
x := x+1

od
post x = isrt(n)

The instruction of the derived metaprogram does not refer to isrt(n) anymore, and therefore may be said to be

“more practical” than P2.

Still, our program is very slow. If we want to speed it up, we have to install a “faster engine” to drive it.

Let us start from the construction of a universal searching engine for “target integers” in a logarithmic time.

Let po2.k denote a condition which is satisfied if k is a nonnegative power of 2, i.e., if there exists a

nonnegative m such that:

k = 2m

Let mag.k (the magnitude of k) denote a function with values in the set of powers of 2 such that

mag.k ≤ k < 2*mag.k

For instance, mag.11 = 23 since

23 ≤ 11 < 24

Now, it is easy to prove the total correctness of the two following metaprograms:

Q1: pre x,k,z is nnint :
z := 1;
asr x,k,z is nnint and po2.z in

while z ≤ 2*mag.k do z:=z*2 od
rsa

post x,k,z is nnint and z = 2*mag.k

 and

 Q2: pre x,k,z is nnint and z = 2*mag.k:
 x := 0;
 while z > 1
 do
 z := z/2;
 if x+z ≤ k then x:=x+z else skip-i fi
 od
 post x = k and z = 1

85 This equivalence may be formally proved on the ground of the following definition: isrt(n) is the unique integer k such
that k2 ≤ n < (k+1)2.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 197

The first metaprogram computes the successive powers of 2 until it reaches 2*mag.k, and the second returns

from 2*mag.k to 1 through successive powers 2m and on its way summarises these powers of 2 that corre-

spond to 1 in the binary representations of k. For instance, since

11 = 0*16 + 1*8 + 0*4 + 1*2 + 1*1

the second metaprogram, while given 2*mag.11 = 16, will perform the following summation

8 + 2 + 1 = 11.

In this way, the target value of k is reconstructed in logarithmic time, compared to a linear time of metapro-

gram P3. Now observe that the following metacondition is true:

z ≤ mag.k ≡ z ≤ k whenever x,n,z is nnint and po2.z

Due to this equivalence, we can replace the boolean expression in while of the first metaprogram by the

strongly equivalent expression z ≤ k. If we join both metaprograms on the ground of Rule 9.4.2-5, we get our

target metaprogram that finds the value of k in logarithmic time. In the same step, we move the initialization

of x at the beginning of the metaprogram.

Q3: pre z, x, k is nnint :
z := 1;
x := 0;
asr x,k,z is nnint and po2.z in

while z ≤ k do z:=2*z od;
 while z > 1
 do
 z := z/2;
 if x+z ≤ k then x:=x+z fi
 od
rsa

post x = k and z = 1

Here and in the sequel

if vex then ins fi

means

if vex then ins else skip-i fi

If in Q3 we replace the expression k by the expression isrt(n), then we have a program that computes isrt(n) but

refers to it. We eliminate isrt(n) by using two strong conditional equivalences:

z ≤ isrt(n) ≡ z2 ≤ n whenever z, n is nnint
x+z ≤ isrt(n) ≡ (x+z)2 ≤ n whenever z, x, n is nnint

In this way we get

Q4: pre z, x, n is nnint:
z := 1;
x := 0;
asr x,k,z is nnint and po2.z in

while z2 ≤ n do z:=2*z od ;
while z > 1

 do
 z := z/2;
 if (x+z)2 ≤ n then x:=x+z fi
 od
rsa

post x = isrt(n) and z = 1

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 198

Now we shall time-optimize our program by restricting the number of performed operations. Let us start

from the observation that in each run of the first loop, the program recalculates the value of z2, which is not

optimal. To speed up Q4 we introduce a new variable q, and we enrich our program in such a way that the

condition q=z2 is always satisfied. Such a q will be called a register identifier and z2 — a register expression.

This technique is discussed in details in Sec. 9.5.3.

Q5: pre z, x, n, q is nnint:
z := 1;
x := 0;
q := 1;
asr z, x, n is nnint and po2.z and q = z2 rsa

while q ≤ n
do

off z:=2*z; q:=4*q ffo
od

while z > 1
do

off z:=z/2; q:=q/4 ffo
if x2+2*x*z+q ≤ n then x:=x+z fi

od
rsa

post x=isrt(n) and z = 1 and q=z2

Note that the double-use of off-ffo is necessary since each time when the first assignment destroys the satis-

faction of q=z2, the second recovers it. For better readability of our program we do not “quote” the assertion

in the off-ffo instruction assuming that it is defined by the context. Now we proceed to further transfor-

mations:

1. we use the equivalence z>1 ≡ q>1 whenever (z>0 and q=z2) to modify boolean expression in the

second loop,

2. we introduce two new variables y and p with the conditions y = n-x2 and p = x*z,

3. we use the equivalence x2 + 2*x*z + q ≤ n ≡ 2*p+q ≤ y whenever (y=n-x2 and p=x*z)

Using the corresponding transformations, we get the following program

Q6: pre z, x, n, q, y, p is nnint:
 z := 1;
 x := 0;
 q := 1;
 asr z, x, n is nnint and q = z2 in
 while q ≤ n
 do
 off z:=2*z; q:=4*q ffo
 od
 y := n;
 p := 0;
 asr y=n-x2 and p = x*z in

while q > 1
do

off z:=z/2; q:=q/4; p:=p/2; ffo
if 2*p+q ≤ y then x:=x+z; p:=p+q; y:=y-2p-q fi

od
rsa

rsa
post x=isrt(n) and z=1 and q=z2 and y=n-x2 and p=x*z

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 199

Contrary to the former introduction of a new variable which was clearly justified, now it not quite clear why

p and y have been introduced. The answer follows from a well-known truth that in programming, like in play-

ing chase, we sometimes have to predict a few moves in advance. These moves are shown a little later.

In the next transformation, we prepare our metaprogram for the removal of variable z. For that sake, we

perform the following changes:

1. we apply the equivalence q=z2  isrt(q)=z whenever z > 0 to change the assertion,

2. we use the condition isrt(q) = z to replace z by isrt(q) everywhere except the left-hand side of the as-

signment,

3. we make obvious changes based on the equality z=1.

The resulting metaprogram is the following:

Q7: pre z, x, n, q, y, p is nnint:
 z := 1;
 x := 0;

q := 1;
 asr z, x, n is nnint and isrt(q)=z in
 while q ≤ n
 do
 off z:=2*isrt(q); q:=4*q ffo
 od
 y := n;
 p := 0;
 asr y = n-x2 and p = x*isrt(q) in
 while q > 1
 do
 off z:=isrt(q)/2; q:=q/4; p:=p/2 ffo
 if 2*p+q ≤ y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi
 od
 rsa
 rsa
 post x=isrt(n) and z=1 and q=1 and p=x and y=n-x2

Now observe that in Q7 the variable z does not appear neither in boolean expressions nor on the right-hand

sides of assignment that do not change z. Since we do not care about the terminal value of z, we can remove

that variable from our metaprogram together with the corresponding assignment (general rule will be de-

scribed in Sec. 9.5.1). In this way we get:

Q8: pre x, n, q, y, p is nnint :
 q := 1;
 x := 0;
 asr x, n is nnint in
 while q ≤ n
 do
 q:=4*q
 od
 y := n;
 p := 0;
 asr y = n-x2 and p = x*isrt(q) in
 while q > 1
 do
 off q:=q/4; p:=p/2 ffo
 if 2*p+q≤y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi
 od
 rsa

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 200

 rsa
 post x=isrt(n) and q=1 and p=x and y=n-x2

Now we use the equivalence

x=isrt(n) ≡ p=isrt(n) whenever p=x

to modify the postcondition which makes variable x not necessary anymore. Therefore, we can remove it

with all expressions, and assertions, where it appears.

Q9: pre n, q, y, p is nnint:
 q := 1;
 while q ≤ n do q:=4*q od
 y := n;
 p := 0;
 while q > 1
 do
 if 2*p+q≤y then p:=p+q; y:=y-2p-q fi
 od
 post p=isrt(n) and q=1

In the last step we replace the instruction

p:=p/2; if 2*p+q≤y then p:=p+q; y:=y-2p-q else x:=x fi

by an equivalent instruction

if p+q≤y then p:=p/2+q; y:=y-p-q else p:=p/2 fi

As a result, we get the final version of our metaprogram:

Q10: pre n, q, y, p is nnint :
 q := 1;
 while q ≤ n do q:=4*q od
 y := n;
 p := 0;

while q > 1
do

q:=q/4;
if p+q≤y then p:=p/2+q; y:=y-p-q else p:=p/2 fi

od
post p = isrt(n)

This program was written by a well-known Norwegian computer-scientist Ole-Johan Dahl in 1970 to be ap-

plied in a microprogrammed arithmetical unit of a computer. It is very time-efficient since in a binary arith-

metic the multiplications and divisions by 2 or 4, correspond to simple shifts left or right respectively of bina-

ry words. And except shifts it uses only addition and subtraction which are also time inexpensive. In the days

when microprocessors were not very fast such optimization was worth the effort.

We do not know in what way Dahl has built this program but we may suppose that he performed an opti-

misation similar to ours, although without formalised rules.

Our example shows a certain specific approach to developing some programs with while-loops by build-

ing a program in three steps:

1. writing a program-engine that searches through a specific space of data,

2. installing an appliance on that engine which implements the expected functionality,

3. optimizing the program.

As we are going to see in Sec. 9.5.1, our technique may also be used in changing the types of data elaborated

by a program.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 201

9.5.2 Changing the types of data

The technique of register identifiers may be also used in the replacement of one data-type by another one. In

this section we show how to transform metaprogram Q10 from Sec. 9.5.1 into a metaprogram that operates

on binary representations of positive integers. Let

bin : Binary = {(0)} | {(1)} © {(0), (1)}c*

be the set of binary representations of integers called binary words, and let

int : NnInt = {0, 1, 2,…}

be the set of non-negative integers. We shall use the following functions and relations defined on binary

words:

sl : Binary ⟼ Binary shift left
sl.bin =
 bin = (0) ➔ (0)
 true ➔ bin © (0)

sr : Binary ⟼ Binary shift right

sr.bin =
 bin = (0) ➔ (0)
 true ➔ pop.bin

+ : Binary ⟼ Binary addition

− : Binary ⟼ Binary subtraction

< : Binary ⟼ {tt, ff} less

≤ : Binary ⟼ {tt, ff} less or equal

The addition and the subtraction of binary words are denoted by the same symbols as for numbers and we

assume that they are defined in such a way that the equations (5) and (6) below are satisfied. The orderings

are lexicographic and again correspond to their numeric counterparts.

b2n : Binary ⟼ NnInt binary to number; conversion function

n2b : NnInt ⟼ Binary number to binary; conversion function

All these functions and relations are defined in such a way that they satisfy the following equations:

(1) b2n.(n2b.lic) = int
(2) n2b.(b2n.bin) = bin
(3) n2b.(int*2) = sl.(n2b.int)
(4) n2b.(int/2) = sr.(n2b.int) where „/” denotes the integer part of division

(5) n2b.(int1 + int2) = n2b.int1 + n2b.int2
(6) n2b.(int1 − int2) = n2b.int1 − n2b.int2
(7) n2b.int1 < n2b.int2 iff int1 < int2
(8) n2b.int1 ≤ n2b.int2 iff int1 ≤ int2

Now, we transform metaprogram Q10 by introducing to it three new variables and three corresponding regis-

ter-conditions:

Q = n2b(q)
Y = n2b(y)
P = n2b(p)

We assume that a type binary has been defined in our language. We introduce the assertions into Q10 and we

shift all initialisations to the beginning of our new metaprogram:

Q11: pre n, q, y, p is nnint and Q, Y, P is binary and n ≥ 1
 q := 1; Q := (1);
 y := n; Y := n2b(n);
 p := 0; P := (0);

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 202

 asr Q = n2b(q) and Y = n2b(y) and P = n2b(p) in
 while q ≤ n

do
off q:=4*q ; Q = sl(sl(Q)) ffo

od
 while q > 1

do
off q:=q/4; p:=p/2;
Q:=sr(sr(Q)); P:=sr(P); ffo
if p+q≤y

then off p:=p/2+q; y:=y-2p-q; P:=sr(P)+Q; Y:=Y-sl(P)-Q ffo
else off p:=p/2; P:=sr(P) ffo

fi
od

rsa
post p = isrt(n) and q = 1

Now we use four conditional equivalences in order to replace boolean numeric expressions by boolean binary

ones:

q ≤ n ≡ Q ≤ n2b(n) whenever Q=n2b(q)
q > 1 ≡ (1) < Q whenever Q=n2b(q)
p+q ≤ y ≡ P+Q ≤ Y whenever Q=n2b(q) and Y=n2b(y) and P=n2b(p)
p=isrt(n) ≡ P=n2b(isrt(n)) whenever P=isrt(p)

Next we remove from our metaprogram all numeric variables except n with the corresponding assignments

and the assertion block. Since this block reaches the end of the metaprogram, we can modify the postcondi-

tion in an appropriate way.

Q12: pre n ≥ 1 and Q, Y, P is binary
 Q := (1);
 Y := n2b(n);

P := (0);
while Q ≤ N do Q = sl(sl(Q)) od;
while (1) < Q

do
Q:=sr(sr(Q)); P:=sr(P)
if P+Q≤Y

then P:=sr(P)+Q; Y:=Y-sl(P)-Q
else P:=sr(P)

fi
od

post P = n2b(isrt(n)) and Q = (1)

9.5.3 Adding a register identifier

This section is devoted to the transformation of metaprograms by adding to them a new identifier ide-r that

satisfies an assertion of the form:

ide-r = vex-r.

Such transformations ware applied in Sec. 9.5.1 in passing from Q4 to Q5 and in Sec. 9.5.2 in passing from

Q10 to Q11.

An identifier ide-r that satisfies the condition ide-r = vex-r in a certain range is called a register-identifier

or just a register; the expression vex-r is called a register-expression and the condition ide-r = vex-r ― a

register-condition.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 203

Let us start from an obvious generalization of the meaning of @ (Sec. 9.2.2) which now will compose in-

structions not only with conditions but also with value expressions:

[sin @ vex] = [sin] ● Sde.[vex]

Let’s consider a metaprogram that we assume to be correct:

P: pre prc
 sin-h; head (possibly trivial)

 asr con rsa ;

 asr con in ins ; rsa
sin-t tail (possibly trivial)

post poc

Let ide-r be an identifier which does not appear in P, and let vex-r be a value expression such that

pre con : ide-r := vex-r post TT

which simply means that con guarantees the execution of ide-r := vex-r without an error or looping. Under

these assumptions a transformation that enriches P by introducing ide-r with a register-condition

ide-r = vex-r

yields a metaprogram:

Q: pre prc and ide-r is tex
sin-h ;

 ide-r := vex-r ;
 asr con and ide-r = vex-r in $(sin, ide-r = vex-r) rsa

sin-t
post poc

where $(sin, ide-r = vex-r) denotes such an enrichment of sin which makes Q correct, provided that P was

correct. The assertion asr con rsa has been dropped from Q (although we could have left it there), since it

only served to guarantee, that in its context the value of vex-r was defined.

The syntactic operation $ is defined by structural induction, wrt the structure of sin. Let us start from sin
which is an assignment

ide := vex

where ide is different from ide-r, since we have assumed that ide-r does not appear in P.

If ide does not appear in vex-r, then the execution of this assignment does not cause any change in the

value of vex-r, and therefore we do not need to add any actualization.

If, however, this is not the case, then directly after ide:=vex, we have to add an assignment which recov-

ers the satisfaction of the condition ide-r = vex-r. In such a case

$(ide := vex , ide-r = vex-r) = off ide := vex; ide-r := vex-r ffo

where equality sign ‘=’ denotes the equality of syntactic elements. An off-clause is necessary here since ide
appears in vex-r. Consequently, the alteration of the value of ide may cause the alteration of the value of

vex-r and the falsification of our condition. In the case of the transformation of Q4 to Q5 with a register

condition q=z2 this has led to the enrichment of

asr q=z2 rsa ; z:=2*z

into:

asr q=z2 rsa ; off z:=2*z ; q:=z2 ffo

The assertion has been left in the resulting instruction since we shall need it a little later. Now, our instruction

may be changed into an equivalent one (note the inverse order of assignments):

asr q=z2 rsa ; off q:=((z:=2*z) @ z2) ; z:=2*z ffo

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 204

In this instruction, we can eliminate @, by transforming the expression (z:=2*z) @ z2 to a standard form:

asr q=z2 rsa ; off q:=4*z2 ; z:=2*z ffo

Now, since the assertion q=z2 holds “just before” the assignment q:=z2, we can replace our instruction by:

asr q=z2 rsa ; off q:=4*q ; z:=2*z ffo

which makes the modification of q independent of z, and therefore — in our example — allows for the elimi-

nation of z from the metaprogram. In the general case, these transformations are as follows. First the instruc-

tion

off ide:=vex ; ide-r:=vex-r ffo

is replaced by an equivalent one

off ide-r := ((ide := vex) @ vex-r) ; ide := vex ffo

Further on, the expression ((ide := vex) @ vex-r) is transformed to a standard form, and then we try to

change it is such a way that the identifier ide can be eliminated due to the register-condition ide-r=vex-r.

This action completes the transformation.

The second “atomic” case to be investigated is a procedure call:

call ide(val acp-v ref acp-r)

Let us assume that our procedure call appears in a program in the same context as the assignment in the for-

mer case. We again have two subcases to be considered.

If none of the actual referential parameters appears in vex-r, then we keep the instruction unchanged. In

the opposite case, we replace it with the instruction

off call ide (ref acp-r val acp-v); ide-r := vex-r ffo.

This completes the first step of structural instruction. The remaining steps are rather obvious:

$((ide-1 ; ide-2), ide-r=vex-r) =
$(ide-1, ide-r=vex-r) ; $(ide-2, ide-r = vex-r)

$(if vex-b then sin-1 else sin-2 fi, ide-r = vex-r) =
if vex-b then $(sin-1, ide-r = vex-r) else $(sin-1, ide-r = vex-r) fi

$(while vex-b do sin od, ide-r = vex-r) =
while vex-b do $(sin, ide-r = vex-r) od

In short, after each assignment or a procedure call that changes the value of a register condition, we add a

recovering assignment. The generalization of $ on specinstruction is rather evident.

In the end, let us point out a methodological difference between @ and $. The former is a character in the

syntax of Lingua-V, and on the denotational side corresponds to a sequential composition of an instruction

denotation with a data-expression denotation. Therefore:

Sde.[sin @ vex] = Sin.[sin] ● Sde.[vex]

In turn, $ is a constructor of syntaxes (from the level of MetaSoft)

$: Instruction x RegisterCondition ⟼ Instruction

where

RegisterCondition = Identifier = ValExp86

86 Notice that the first sign of the equality belongs to MetaSoft and denotes the equality of formal languages, whereas

the second — typed in Arial Narrow — is a character in the syntax of Lingua.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 205

10 RELATIONAL DATABASES INTUITIVELY

10.1 Preliminary remarks

Section 11, which follows this one, is devoted to an extension of Lingua by selected database tools offered

by SQL (Structured Query Language). Since we don’t expect our reader to be familiar with SQL, the present

section contains an informal description of some basic SQL-mechanisms that we shall try to formalize later.

Several concept that we introduce in both mentioned sections do not appear in standard SQL manuals, and

therefore they will be labelled by “(OWN)” which stands for “our OWN notion”.

This section refers to several SQL sources since we didn’t find a single manual sufficiently complete and

unambiguous to identify the meaning of all these SQL mechanisms that we shall talk about. A nice book of

Lech Banachowski [9] contains a model of relational databases and a description of SQL standard, but some

issues are missing (e.g., three-valued predicates), and some others are only sketched. On the other end of the

scale of clarity and preciseness is a thick volume of Paul DuBois [52]. We quote some “definitions” from that

book just to show the scale of problems one has to tackle in building a denotational model for SQL. Between

these two extremes, but certainly closer to DuBois, are four other books, [54], [60], [75] and [82]. Of course,

since all the books mentioned above were published some time ago, certain mechanisms described there may

look slightly differ today.

Lingua-SQL, whose draft denotational model will be given in Sec. 11, may be regarded as a sort of an

API (Application Programming Interfaces) or a CLI (Call Level Interfaces)87 on the ground of Lingua. API’s

have been created for such programming languages as C, PHP, Perl, Phyton, and CLI’s — for ANSI, C, C#,

VB.NET, Java, Pascal, and Fortran88. In each of these cases, a language is equipped with mechanisms allow-

ing to run functionalities of an existing SQL engine. In our case the situation is different. If in the sequel

anyone would undertake the challenge of implementing Lingua-SQL they should first implement their own

SQL engine to make sure that this engine is adequate to our denotational model.

Similarly as in the case of Lingua we shall not attempt to defined a “completed” language. We shall only

formalize some selected tools of SQL, to provide a denotational framework where a more complete SQL

engine might be defined.

10.2 Basic values and their types

Types of only one category ― table types ― appear explicitly in SQL-manuals known to us. Several other

types are present only implicitly. They include basic types89 (OWN), i.e., the types of basic values (OWN)

that appear in the fields of database tables, and structural types (OWN) such as the types of columns, rows

and databases.

We shall define basic values as pairs consisting of a basic data (OWN) and a basic type. Basic data consti-

tute probably one of the least standardised areas of SQL. Their categories may differ not only between differ-

ent applications but also between different implementations of the same application.

In the present section, we base mainly90 on [82], whose authors declare the compatibility with the standard

ANSI SQL-201191. The SQL syntax is printed, as in the former parts of the book, in Arial Narrow.

Database tables may be regarded as two-dimensional arrays carrying in their fields four sorts of basic val-

ues, each of them, except booleans, further split into several subcategories:

87 CLI refers to the standard ANSI SQL (see [82] p. 359)
88 Access has not been mentioned on these lists since it is available only together with Microsoft Basic Access.
89 Some basic data are simple data, as defined in Sec. 4.1, but some others are not.
90 „Mainly” but not „totally” since this manual also contains gaps.
91 ANSI is an acronym of American National Standard Institute, and SQL-2011 is a standard accepted by ANSI in De-

cember 2011.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 206

• Numbers split into two subsorts: integers and decimal numbers that split further into several types

differing from each other by the range of values, e.g., SMALLINT, BIGINT or DECIMAL(p, s), where p

(precision) denotes the maximal number of digits and s (scale) ― the maximal number of digits after

the decimal point.

• Logical values are handled as in the three-valued predicate calculus of Kleene (Sec. 2.10), and in [82]

they are denoted by TRUE, FALSE, and NULL whereas in [54] by 0, 1, and NULL. Sometimes, e.g., in

[60] instead of NULL we have UNKNOWN.

• Strings are, in principle, texts in our sense, but, similarly to numbers, they are split into subtypes de-

pending on a maximal accepted number of characters. For instance, CHARACTER(n) is the type of

words of the length n. The type of a string with varying length limited to n is called in [82] CHARAC-
TER VARYING(n), and the type of a string of an unlimited length (whatever it means) is called BLOB.

There exist also binary strings, and text-strings called TEXT.

• Times are tuples of three types: DATE ― (year, month, day), TIME ― (hour, minute, second),
DAYTIME ― (year, month, day, hour, minute, second).

Although it is nowhere explicitly said, one may guess (cf. [82]) that all sorts of data contain NULL that in

some context plays the role of an abstract error. The majority of constructors, except boolean constructors,

seem to be transparent for that error.

The constructors of basic data may be split into five following groups92:

1. Arithmetic operations: +, ‒, *, /.
2. String operations: CONCAT, UPPER, LOWER, SUBSTR, LENGTH.
3. Time operations: GETDATE, DAYNAME, DAYOFMONTH,
4. Basic predicates: =, <>, <, <=, >, >=, IS NULL, BETWEEN, LIKE.
5. Logical connectives: NOT, OR, AND.

The first group seems apparently quite obvious, but after a closer analysis we may find that it is obvious only

in typical situations. E.g. 2+3 = 5, but if we try to add a number to a string (which is possible!), or to add two

numbers whose sum exceeds the maximal allowed value, then the expected result is not clear. The source

[82] does not comment on such cases at all, and in [52] p. 786, we can read the following93:

If we do not provide (…) correct values to functions, we should not expect reasonable results.

In another place of the same manual (p. 754) we read:

(…) expressions that contain big numbers may exceed the maximal range of 64-bits computations in

which case they return unpredictable values (our emphasis).

We noticed that in the definitions of arithmetic operations, NULL does not appear, although it could be

used as an abstract error. In this place, the worst possible solution has been chosen: instead of an error

message, we have an “unpredictable result” which means that the computation does not abort, but generates a

false result of an unpredictable value without warning the user.

Especially many unclarities are associated with default rules for type-conversion. For instance ([52] p.

753) the following rule concerns the addition operation if its arguments are words:

… ‘+’ is not an operator for the concatenation of texts, as it is the case in some programming languages.

Instead, before the performance of the operation, textual strings are converted into numbers. Strings that do

not look like numbers (our emphasis) are converted to 0.

This rule is illustrated with the following examples:

‘43bc’ + ‘21d’ = 64

92 The descriptions of 1 to 4 are from [82] (pp. 129 and 180) and of 5 and 6 from [60] (pp. 191 and 201). The terminolo-
gy is ours.

93 Our own translation from the Polish version of the book.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 207

‘abc’ + ‘def’ = 0

It hasn’t been explained, if, e.g., ‘43ab2c’ “looks like a number”, and if it does, is it converted to 43 or 432? It

has not been explained either, whether these rules apply to other arithmetic operations.

Fortunately [82] treats conversion a little more seriously ― although still informally ― introducing four

types of conversions:

1. strings to numbers,

2. numbers to strings,

3. strings to dates and times,

4. dates, and times to strings.

String-operators offer fewer ambiguities, but still are defined only for typical situations. For instance, we did

not find information about what happens if the concatenation of two strings exceeds an accepted length.

Time-operators offer further examples of inconsistencies between different SQL-applications that concern

both the syntax and the types of operators. We shall not further analyse this problem since the involved oper-

ators are easy to formalise, once we decide about their meanings.

Predicates are typologically ambiguous since, in the majority of cases, they apply to all four sorts of data.

E.g., the operators ‘=’ and BETWEEN may be used for numbers and strings and probably also for dates. Their

definitions are rather vague. E.g., in [82] p. 130, we can read:

If in a query, we use the (=) operator, the compared values must be identical, and in the opposite case, the

condition is not satisfied.

It has not been explained if “not satisfied” means “false” or “not true”. E.g. should we regard the value of

the boolean expression 12 = abc as false or error?

The operator BETWEEN takes three arguments and checks if the first is between the second and the third in

some default ordering.

The operator LIKE takes two string-arguments and checks if the first coincides with the pattern described

by the second. Patterns are described using letters, digits and two special symbols:

% ― an arbitrary string of characters (possibly empty)

_ ― an arbitrary character

The only source where we found complete definitions of logical operators is [60], where a table-definition is

given on page 191 and corresponds to Kleene’s operators defined in Sec. 2.10. It seem rather strange that

although we have a NOT operator in the language, special negated versions are introduced for all predicates,

e.g., NOT NULL or NOT BETWEEN.

For all non-boolean operators, we have in SQL a situation which is typical for software manuals. Within

the area of standard ranges of arguments, everything is clear. If, however, we go beyond this area, we can

hardly predict what will happen. With a high degree of certainty, we may expect to encounter a different sur-

prise in each implementation.

10.3 Creating tables

A central SQL-concept is a table, that is a two-dimensional array, but may be also regarded as a tuple of

named columns where columns are tuples of basic values of a common type. Alternatively, a table may be

regarded as a tuple of rows, where rows are mappings from identifiers (column names) to basic values. The

intersections of rows and columns are called table fields. Of course, in reachable tables all rows have a com-

mon set of column names and tables are rectangular.

Tables in SQL are storable, i.e., assignable to variables in memory stores. In the sequel, variables carrying

tables will be called table variables (OWN) or table names. To declare a table variable, we use operator

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 208

CREATE TABLE that assigns to a variable identifier a table type and (we can guess) a one-row table of default

values indicated by table type94.

A table type (OWN) may be seen as a tuple consisting of:

• a mapping assigning to each column name a column type,

• a predicate, called a row yoke (OWN), that describe a common property of all rows.

In turn, a column type (OWN) consist of:

• a basic type to be the common type of all values standing in the column,

• an (optional) default value or an indication that it can’t be NULL,

• a predicate, called column yoke (OWN), that describes properties of the column,

• a finite set of marks (OWN) that describe relationships between tables in the database (Sec. 10.4).

Here is an example of two such declarations cited with only minor modifications after [9] p. 1495:

CREATE TABLE Affiliations
 (
 Department_ID Number(3) PRIMARY KEY,
 Department Varchar(20) NOT NULL UNIQUE
 City Varchar(50)
);

CREATE TABLE Employees
(
 Employee_ID Number(6) PRIMARY KEY,
 Name Varchar(20) NOT NULL,
 Position Varchar(9) DEFAULT NULL,
 Manager Number(6) ,
 Employment_date Date,
 Salary Number(8,2),
 Bonus Number(8,2),
 Department_ID Number(3) REFERENCES Affiliations,
CHECK(Bonus + Salary < 10000)
)

The tabulation in this example shows a certain universal structure of a declaration:

• in the first column we see column names96 of the future table; they will be common to all rows consti-

tuting this table,

• the remaining columns carry informations about data stored in table columns; in our model, they will

be expressed by the mentioned already four components of a column type (some of them may be op-

tional),

Special cases represent informations expressed by REFERENCES Affiliations and PRIMARY KEY that indicate a

subordination relation between tables (Sec. 10.4),

94 We did not find in the literature on SQL any information about what category of tables is assigned to a table-variable
by its declaration.

95 In Sec. 11 we shall frequently refer to this example and also to some other examples from [9]. In all cases we keep
the original notation, where Number(p) denotes a type of total numbers with p digits, and Number(p, s) denotes the
type of decimal numbers of the total number of digits equal to p and the number of digits after decimal point equal to
s. In turn Varchar(n) denotes the type of strings of length not exceeding n.

96 It may be slightly misleading at the beginning that in the syntax of table declaration column names are positioned
vertically in one column rather than horizontally as they will appear in tables displayed on monitors. It is only a nota-
tional convention that facilitates writing table-type declaration with numerous column names.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 209

In the last row of the second declaration we see a row-yoke expression describing the requirement that the

values of the fields Salary and Bonus in each row of the future table satisfy the indicated condition.

The elements of a table declaration, except column names, will be referred to as integrity constraints of a

table. Their meanings are following:

1. Number(3) ― the type of data in the column.

2. DEFAULT ― a default value follows this keyword.

3. NOT NULL ― all fields in the column must not be empty, i.e., none of them may be NULL. An attempt

of a violation of this constraint should generate an error signal.

4. UNIQUE ― no two identical data may appear in the column. If this happens, an error message should

be raised.

5. PRIMARY KEY ― carries two pieces of information: (a) that this column may be a parent column for a

column of another table (see Sec. 10.4), (b) that repetitions of elements are not allowed.

6. REFERENCES Affiliations ― the field Department_ID in table Employees is related to the field of the

same name in the table Affiliations. Relations between tables are used to modify tables and to create

queries.

7. CHECK(Bonus + Salary < 10000) ― all rows of the table should satisfy this condition.

As we see from this example, when we declare a table variable, we define its type97. In this way we define

seven groups of properties of a future table:

1. the names of columns, e.g., Department_ID,

2. the types of data in all fields of a given column, e.g., Number(6),
3. the default value for a given column, e.g., DEFAULT NULL,

4. restrictions concerning columns as a whole, e.g., NOT NULL or UNIQUE,
5. indicator of a special role of a column in the database, e.g., PRIMARY KEY,
6. relationships between tables by indicating related columns in tables, e.g., REFERENCES Affiliations.
7. relationships between values in each row, e.g., CHECK(Bonus + Salary < 10000); in our model it will be

called a row yoke (Sec. 11.2.3).

10.4 Databases and subordination relation between tables

By a database we shall mean a finite collection of named tables, i.e. a mapping from identifiers to tables. A

subordination relation in a database may be defined as a set of triples of the form

 (table name 1, column name, table name 2)

including two (different) names of tables in the base and a common name of their columns. Denotationally

these relations may be regarded as yoks that define properties of databases.

The mechanism of establishing relations between tables appears in SQL literature in several versions. All

of them base on a common idea, although their implementations may be different. Below we try to describe

this common idea.

Consider tables Affiliations and Employees from Sec. 10.3. In Employees, we have a column Department_Id
which defines the association of an employee to a department. In its declaration we have marking REFER-
ENCES Affiliations expressing the fact that in the table Affiliations we may find information about the department

where an employee is employed. Instead of storing in the table Employees the information about the depart-

ments where they works, we only show the ID’s of these departments that identify appropriate rows in the

table Affiliations. Now, for this construction to have a practical sense, our two tables must satisfy three condi-

tions:

97 It seems that SQL lacks a mechanism that would allow to define a table type as a stand-alone element, i.e., inde-
pendently of a variable declaration.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 210

1. the column Department_ID must appear in both tables,

2. every ID of a department which is in the table Employees must also appear in the table Affiliations (but

not necessarily vice versa),

3. in Affiliations the column name Department_ID must have no repetitions.

If these conditions are satisfied, then we say that:

the column name Department_ID links the tables Affiliations and Employees with a subordination relation.

In the pair of tables, Affiliations, and Employees, the table Affiliations is called a parent table or a superior table,

whereas Employees is a child table or a subordinated table. The column name Department_ID is a primary key

in Affiliations and a foreign key in Employees.

If an employee’s row ER and a department’s row DR have the same value in the field Department_ID, then

we say that the ER points to the DR (OWN).

The establishment of a subordination relation between tables has consequences for operations on these ta-

bles. For instance:

• Introducing an employee who has been employed in a non-existent department should be impossible,

i.e. the database-engine should generate an error message in that case.

• A department’s record cannot be removed from a table until there are employees employed in that de-

partment. An alternative solution is that all employees of the removed department are automatically

removed by the engine; a cascading solution.

• One can request the creation of a table with three columns that combine information from both linked

tables, e.g., with columns Name, Department, City.

10.5 Instructions of table modification

Tables that have been declared may be modified by instructions. Below we show a few typical examples:

Entering a new column to a table:

ALTER TABLE Employees
ADD COLUMN ID_number CHAR(11) DEFAULT NULL

We add a column to a table, and we indicate a default value for that column.

Deleting a column from a table

ALTER TABLE Affiliations
DROP COLUMN Department_ID CASCADE

This instruction is executed with the option CASCADE, which means that the deletion of a column results in

the deletion of all columns in the tables of current database that refer to that column. An alternative option is

RESTRICT, where the instruction is not executed whenever such columns exist in the database.

Notice that the instructions from the group ALTER TABLE modify not only the content (the data) of a table

but also its type. There are other examples of instructions altering tables ([60] p. 49):

• ALTER COLUMN — column-type is modified by SET DEFAULT or DROP DEFAULT, which sets or drops a

default value.

• ADD — new constraint is added to an existing column.

• DROP CONSTRAINT — the removal of a constraint from an indicated column. For this instruction, RE-
STRICT or CASCADE must be set.

Another group of table-modifying instructions change the contents of tables without modifying their type.

Some typical examples are:

The insertion of a new record (row):

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 211

INSERT INTO Affiliations
VALUES (095, ‘Marketing’, ‘London’)

This instruction may also be written in a form where column names are explicit (cf. [54], p. 73)

INSERT INTO Affiliations (Department_ID, Dep_name, City)
VALUES (095, ‘Marketing’, ‘London’)

In both examples the row-oriented conditions (the row yokes) have been dropped, which means that they are

tautologies. However, if this is not the case, these conditions are not modified by this instruction, i.e., the new

row has to satisfy them.

A conditional modification of data in one column. E.g., the increase of salaries of all salesmen by 10%:

UPDATE Employees
SET Salary = Salary * 1,1
WHERE Position = ‘salesman’

The removal of all rows that satisfy a given yoke. E.g., the removal of all employees who have no position:

DELETE FROM Employees
WHERE Position IS NULL

A particular situation takes place if we drop a row with a primary key which is a foreign key in a child-table,

e.g.:

DELETE FROM Affiliations
WHERE Dep_name = ‘production’

If in the child table Employees the key Department_ID is ― as in our case ― a foreign key and there exist rows

which point to the rows that are supposed to be deleted from Affiliations, then the operation is not executed and

an error message is generated. However, the operation:

DELETE FROM Affiliations
WHERE Dep_name = ‘production’ CASCADE

will be executed, and additionally, in the table Employees, all rows that point to the row, which is deleted

from Affiliations, are deleted as well98.

10.6 Transactions

By a transaction, we mean a sequence of instructions closed (or not) in some parentheses such as, e.g., BEGIN
TRANSACTION and COMMIT TRANSACTION99. A transaction may be equipped with an error recovery mecha-

nism that stops the execution of a transaction whenever:

• the execution would violate integrity constraints, or

• the execution is not possible, e.g., we search for a non-existing element in a table.

In all such cases, the implementation returns to the initial database state of the transaction that is called the

roll-back value of the database100.

Five following keywords are used to control the recovery mechanism of transactions in SQL-programs:

SAVEPOINT ― save rollback-value of a database

RELEASE SAVEPOINT ― delete rollback-value

98 There is a certain inconsistency in SQL compared with the deletion columns. In the case of rows option RESTRICT
is set by the system without the possibility of choosing another option by the user.

99 These parentheses may differ between applications (some manuals are not mentioning them at all). Here we use the
notation of Bena Forty ([54], p. 175) which is a standard for Microsoft SQL Server.

100 We have to warn the reader that in all known to us manuals, transactions are described in an exceptionally unclear
and incomplete way, and therefore our understanding of this construction is based more on guesses than on facts.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 212

ROLLBACK ― call-of transaction

IF ― a conditional activation of a rollback

COMMIT TRANSACTION ― accept transaction.

The instruction

SAVEPOINT savepoint-name

assigns the actual database to a temporary user-defined database name (variable) savepoint-name. The instruc-

tion

RELEASE SAVEPOINT savepoint-name

 deletes the variable savepoint-name (and its value) from the state. The instruction

ROLLBACK savepoint-name

brings the database to its rollback-value and deletes the variable savepoint-name. This instruction may also

appear without a parameter, in which case the database is (probably?) rolled back to the value initial of trans-

action-execution101. In such cases, the execution of a transaction should start with a default SAVEPOINT,
which saves database value to some system variable. It also seems that ROLLBACK aborts program execution

and generates an error message.

To make the execution of ROLLBACK dependent on an error message, one may use the conditional IF con-

structor. Ben Forta ([54] p. 179) shows the following example:

IF @@ERROR <> 0 ROLLBACK savepoint-name

It is explained there that @@ERROR is a system-variable whose value equals 0 if there is no error message,

and (we guess) equals some error message (or 1?) in the opposite case.

This example suggests ― although that hasn’t been explicitly written ― that the condition of IF might be

of the form

@@ERROR = error-message

with a specific error message. Such a solution would allow making the execution of ROLLBACK dependent on

the type of an error.

The execution of COMMIT results in saving the result of the transaction and deleting all earlier declared

rollback-variables.

For instance, in a database carrying data of bank customers, the transaction that moves 1000 $ from one

account to another may have the following form:

BEGIN TRANSACTION

SAVEPOINT start

UPDATE Accounts
SET Balance = Balance – 1000

WHERE ClientID = 1250 ;

IF @@ERROR <> 0 ROLLBACK start ;

UPDATE Accounts
SET Balance = Balance+ 1000

WHERE ClientID = 1260 ;

IF @@ERROR <> 0 ROLLBACK start

101 The parameter-less version of this instruction appears in the majority of manuals known to us.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 213

COMMIT TRANSACTION

The first ROLLBACK takes place if there is no customer in the database with ID equal 1250, or if its balance-

value is less than 1000. The second ROLLBACK is activated if the first is not, but there is no customer in the

database with ID equal 1260.

Notice that after the execution of the first UPDATE, the actual sum of all deposits is not equal to the bank-

balance of deposits, which means that the integrity constraints are violated. The second UPDATE “removes”

this violation, but if it can’t be performed because of the lack of 1260-customer, then the transaction would

end with an inconsistent database. The second ROLLBACK prevents such a situation.

10.7 Queries

Queries are used to collect information from one or more tables in the form of a new table. The execution of

a query results in the generation of a table and possibly in displaying it on a monitor. Queries are constructed

by several variants of operator SELECT. Below a few typical examples:

The selection of indicated columns of a table:

SELECT Name, Salary, Position
FROM Employees

As a result of this query, a monitor displays a three-column table with columns indicated by the parameters

of SELECT.

The selection of columns combined with the filtering of rows:

SELECT Name, Salary, Position
FROM Employees
WHERE Department_ID = 10

In WHERE clause, we may have boolean expressions with operators on basic data described in Sec. 10.2.

Queries may be composed of other queries using operators called by Banachowski [9] algebraic opera-

tors on queries. These operators may be applied to more than one table. For instance:

SELECT Department_ID
FROM Affiliations
EXCEPT
SELECT Department_ID
FROM Employees

This query generates a one-column table of the ID’s of these departments that appear in the table Affiliations

but that do not appear in the table Employees. i.e., the ID’s of departments with no employees.

A specific group of queries allows reaching more than one table. In such a case, we say that queries use

the joins of tables. Below we see an example of a query that selects data from two tables ― Employees and

Affiliations.

SELECT Employee_ID, Name, Department_ID
FROM Employees, Affiliations
WHERE Employees.Department_ID = Affiliations.Department_ID
AND Affiliations.City = ‘London’

This query generates a three-column table where each row contains the ID of an employee, his/her name, and

the name of the department where he/she is employed. The condition in WHERE-clause is called a joint predi-

cate. In our case, it returns only such rows where employees are employed in departments located in London.

In WHERE-clauses, we may use boolean expressions exploring basic predicates on basic data (Sec. 10.2),

e.g.:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 214

SELECT Employee_ID, Name, Salary
FROM Employees
WHERE Salary > 1000 AND Salary <= 2000

or set-theoretic operators. For instance, the query:

SELECT Employee_ID, Name, Position, Salary
FROM Employees
WHERE Position IN (‘cashier’, ‘salesman’, ‘manager’).

generates a table with cashiers, salesmen, and managers. The query:

SELECT Employee_ID, Name, Position, Salary
FROM Employees
WHERE Salary > ALL
(
SELECT Salary
FROM Employees
WHERE Position = ‘cashier’
)

generates a table that shows employees with salaries higher than the salaries of all cashiers. In this case, we

have to do with a nested query, where the inner SELECT generates a column with the salaries of all cashiers.

Let us denote:

sae : SalEmp ― the set of values in the column Salary of the table Employees,

sac : SalCas ― the subset of SalEmp that contains the salaries of cashiers,

shc : SalHigCas ― the subset of SalEmp that contains salaries higher than the salaries

 of cashiers

In this case:

SalHigCas = { sae | sae : SalEmp and (∀ sac : SalCas) sae > sac }

where > is a predicate that compares numeric values and generates an error whenever at least one of its ar-

guments is not a numeric value.

The transparency of > implies that the set SalHigCas contains numbers only, although it may be empty

as well. In particular, it is empty if SalCas contains at least one not-number.

In no bibliographic sources we found information what happens if inequality sae > sac generates an

error. Will it interrupt a program and generate an error, or the query will generate some “unexpected” table,

maybe empty?

Let us consider now a query that results from the former, if ALL is replaced by EXISTS, i.e., that generates

the table of employees with salaries higher than the salary of at least one cashier102:

SELECT Employee_ID, Name, Position, Salary
FROM Employees
WHERE Salary > EXISTS
(
SELECT Salary
FROM Employees
WHERE Position = ‘cashier’
)

Denote:

shs : SalHigSomCas — salaries higher than some salaries of cashiers.

102 In this case we use a syntax which is ― maybe ― not compatible with SQL. we used it, however, to keep the simi-
larity with the ALL example, whose syntax (although not the example itself) has been taken from p. 139.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 215

In that case:

SalHigSomCas = { sea | sea : SalEmp and (∃ sac : SalCas) sea > sac }

hence:

SalHigSomCas = { sea | sea : SalEmp and exists.(SalCas, >).sac = tt }

In that case, contrary to the former, if SalCas contains not-numbers, then the set SalHigSomCas does not

need to be empty.

Notice now that whenever the evaluation of sae > sac for some sac, generates an error, then

exists.(SalCas, >).sac = ff

If, however, we replace EXISTS by SOME, then an error may appear. This replacement does not change the

table generated by our query but affects error generation.

Quantifiers may also appear in the context of joining tables. The query shown below generates the table of

departments where at least one employee is employed.

SELECT Department_ID
FROM Affiliations
WHERE Department_ID = EXISTS
(
SELECT Department_ID
FROM Employees
)

As was mentioned in Sec. 10.2, for every simple operator, there exists its negated version, e.g., = and <>, LIKE
and NOT LIKE, etc. Similarly, we have NOT IN. In the case of set-theoretic quantifiers, we have found only

NOT EXISTS and only in [82] p. 147 and in [52] p. 242. Of course, none of these sources concerns the case

where EXISTS generates an error.

10.8 Views

If we want to use a query more than once, we may declare it as a procedure. Such procedures are called

views. Below we see an example of a view-declaration:

CREATE VIEW Officials
(Employee_ID, Name, Salary)
AS SELECT Employee_ID, Name, Salary
FROM Employees
WHERE Position = ‘official’

This view is named Officials and creates a three-column table by selecting columns from Employees and rows

with ‘official’ that stands in the column Position.

Since views are procedures, they have no counterparts in syntax (cf. Sec. 6.6.1). At the syntactic level, we

only have view declarations CREATE VIEW and view calls (OWN) that refer to the names of views.

View calls may be used in queries in the same way as tables and, of course, a view is executed in the call-

time state rather than in the declaration time state. In SQL-manuals, views are, therefore, referred to also as

virtual tables. Views may also be called in instructions that create or modify tables. Consider the following

view-declaration:

CREATE VIEW Salesmen
AS SELECT * FROM Employees
WHERE Department_ID = 20

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 216

In this declaration, the star “*” means that we chose all columns, and the number 20 is the ID of the sales

department. Calling the view Salesmen we can create an instruction that modifies the table Employees by in-

creasing the salaries of all salesmen by 10%:

UPDATE Salesmen
SET Salary = Salary * 1,1.

In the case of using vies for the modifications of tables, each SQL engine has its specific restrictions. E.g.,

MySQL requires that in SELECT-clauses, only column names may appear.

A special case are views with check option which force the checking of a condition when views are used in

instructions. Banachowski [9] shows an example of such a view:

CREATE VIEW Employees_on_not-payed_holiday
AS SELECT *
FROM Employees
WHERE Salary = 0 OR Salary IS NULL
WITH CHECK OPTION

If this view is used in the instruction:

UPDATE Employees_on_not-payed_holiday
SET Salary = 1000
WHERE Name = ‘Smith’

then it is not executed if the salary of Smith is 0 or NULL.

10.9 Cursors

Cursors are used to assign selected rows of tables to value variables. This mechanism allows for processing

databases using programs written in user-interface programming languages such as API or CLI (see Sec.

10.1). A cursor points to a row in an indicated table and allows us to get data from that row. Tables indicated

by cursors are defined using queries. As a matter of fact, we should not talk about a cursor as such, but about

a cursor of a table, or maybe about a cursor of a query.

Cursors are created using cursor declarations, which assign a cursor to a cursor name (an identifier). Such

declarations are of the form103:

DECLARE cursor_name IS
SELECT …

After a cursor has been declared, it is not yet ready for use. To make it ready, we have to apply an opening

instruction of the form:

OPEN cursor_name.

This instruction causes the execution of SELECT, which appears in the declaration and (we guess) in the set-

ting of the so-called cursor grasp at the “position” preceding the first row of the generated table. The opera-

tion of getting data from a table is:

FETCH NEXT cursor_name INTO variable

The NEXT means getting the data of the row next to the grasp and moving the grasp one row further. It seems,

therefore, that OPEN sets the cursor before the first row.

The FETCH NEXT instruction is usually applied in a program loop, which means that when a grasp reaches

the last row of a table, it can’t be moved further. We have found only one comment on that issue in [82] p.

353 (our translation from the text in Polish):

103 The syntax of a cursor-declaration depends upon application. Here we use the syntax of ORACLE ([82] p. 352).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 217

In every implementation of databases, cursors are implemented in a slightly different way, but each of

them enables a correct cursor-closing without an unnecessary generation of errors.

If a cursor is temporarily not needed, we close it by instruction:

CLOSE cursor_name

This instruction leaves the cursor structure for reopening.

10.10 The client-server environment

So far, when talking about SQL-systems, we were assuming tacitly that the user has a database to his/her

exclusive disposal. However, that is usually not the case. In general, there may be more than one user, which

means that we need tools to give them or to deny access to databases. Here is an instruction scheme which

sets a lock on a given table:

LOCK TABLE table_name
IN [SHARE | EXCLUSIVE]
[NOWAIT]

where the options in square-brackets mean the following:

• SHARE — the lock applies to all users,

• EXCLUSIVE — the lock applies to all users except the one who sets the lock,

• NOWAIT — do not wait for lock setting, if it can’t be set at the moment.

Locks are removed by instructions COMMIT or ROLLBACK. An example of an instruction which gives permis-

sions to a given user may be:

GRANT SELECT, UPDATE (Salary)
ON Employees
TO Smith

This instruction grants the permission of performing SELEC and UPDATE in the table Employees to the user

Smith.

These mechanisms of SQL may differ between the application, but since they are relatively simple to de-

scribe, we shall not discuss them later.

Może należałoby usunąć dwa ostatnie rozdziały, skoro nie będziemy formalizować opisanych w nich me-

chanizmów. ???

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 218

11 A DENOTATIONAL MODEL FOR DATABESES: Lingua-SQL

11.1 Lingua-SQL as an enrichment of Lingua

We shall build Lingua-SQL as an enrichment of Lingua by new categories of types, values, yokes, denota-

tions and corresponding constructors. However, the algebra of denotations of the new language will not be an

algebraic extension of the former algebra, i.e., will not include former caries and constructors plus some new

ones (see Sec. 2.12). That is why we use here the term “enrichment” rather than “extension”. Formally, the

new algebra will include inherently new carriers and constructors. Some of them will be, in a sense, replicas

of the formers, and some others will correspond to “genuinely new” mechanisms coming from an SQL en-

gine.

The borderline between Lingua and Lingua-SQL will be explicitly seen in the definition of new states

that will be pairs consisting of:

• a state in the former sense, called a hereditary component,

• a new SQL component carrying SQL structured values, i.e., tables and databases.

Databases will carry tables, and tables will carry basic values. We shall assume that the SQL basic values

will constitute subcategories of typed data of Lingua and therefore will be generated by (formerly defined)

value expressions.

We shall not introduce expressions evaluating to tables or databases and consequently we will not have

assignment instructions assigning structured SQL values to variables. Tables and databases will be created by

declarations, and further developed, enriched or modified by instructions. They will be assigned to their vari-

ables directly, rather than via references.

In the category of specific SQL types we will have three subcategories:

• basic types,

• column types,

• table types.

Column and basic types will include yokes which is a technical consequence of the fact that we will not have

references in the SQL components of states. We do not introduce database types since they will be implicit in

the types of their tables.

In building Lingua-SQL we will ensure the satisfaction of two adequacy principles relating our model to

“typical implementations” of SQL:

1. whenever a typical implementation raises an error message, our model should guarantee the same,

2. whenever in a typical implementation, “one can’t expect a meaningful result” (cf. Sec. 10.2), our cor-

responding constructor should raise an appropriate error message.

Similarly, as in the case of Lingua, we do not pretend to define a “practical” language. Our goal is to identify

selected critical challenges in building a denotational framework for database mechanisms, but certainly not

to fully cover the SQL diversity of tools. We may also see our experiment with SQL as a case study of add-

ing inherently new mechanisms to an existing programming language.

For compactness, we shall refrain from discussing the syntax of Lingua-SQL. We believe this task should

be reasonably evident for the readers who went through Sec. 7.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 219

11.2 Data, types, values and states

11.2.1 Basic data, types and values

The domains of basic data are the following:

bad : BasDat = Boolean | SmaInt | BigInt | Decimal.(p, s) | String |
 Date | Time | DateTime | {Ω} basic data

bad : Boolean = {true, false} boolean data

bad : SmaInt = … small integers

bad : BigInt = … big integers

bad : Decimal.(p, s) = Integer.(p − s) x Integer.s decimal numbers with s < p

bad : Integer.n = … integers with decimal representations of length n

bad : ChaData = Character.n | CharVar.n | Blob character data

bad : Character.n = Signcn words of length n
bad : Sign = … a set of signs

bad : CharVar.n = Character.1 | … | Character.n words of length not larger than n
bad : Blob = CharVar.m where m is a parameter of the model

bad : Date = Year x Month x Day
bad : Time = Hour x Minute x Second
bad : DateTime = Date x Time

bad : Year = {0,…,9999)
bad : Month = {1,…,12}
bad : Day = {1,…,31}
bad : Hour = {0,…,23}
bad : Minute = {0,…,59}
bad : Second = {0,…,59}

The element Ω represents an empty field of a table and is called an empty data (OWN).

For simplicity we assume that all basic data except time-and-date data are included in the corresponding

domains defined in Sec. 4.1, i.e. in Integer, Real and Text. We also assume that all constructors of simple

data are applicable to basic data. In the time-and-date data category, we assume to have some typical con-

structors, but we shall not define them explicitly. We may regard them as parameters of our model.

Basic types, i.e., the types of basic data are defined by the following equations:

bat : BasTyp = BooTyp | IntTyp | DecTyp | ChaTyp | TemTyp basic types

bat : BooTyp = {‘boolean’} boolean

type

bat : IntTyp = SmaIntTyp | BigIntTyp integer

types

bat : SmaIntTyp = {‘smaint’} small-integer

types

bat : BigIntTyp = {‘bigint’} big-integer

type
bat : DecTyp = {‘De’} x SmaInt x SmaInt decimal

type

bat : ChaTyp = {‘Ch’} x SmaInt | {‘ChV’} x SmaInt | {‘blob’} character

types

bat : TemTyp = {‘date’, ‘time’, ‘datetime’} date-and-time

type

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 220

We skip obvious definitions of basic type constructors. The clanning function

CLAN-bt : BasTyp ⟼ Sub.BasDat

is defined analogously as in Lingua. We assume additionally that Ω is of any type, i.e., Ω : CLAN-bt.bat for

any bat : BasTyp. By a basic value we mean a basic data and its type:

bav : BasVal = {(bad, bat) | bad : CLAN-bt.bat}

Basic values of the form (Ω, bat) are called empty values. The constructors of basic types are defined analo-

gously to the constructors of simple types (Sec. 4.2). We skip their definitions. For technical convenience we

introduce two projection functions:

type : BasVal ⟼ BasTyp

data : BasVal ⟼ BasDat

Their definitions are obvious.

11.2.2 Columns, their yokes and types

By a column we mean a nonempty tuple of basic values of a common type:

col : Column = {(bav-1,…,bav-n) | n ≥ 1 and (∀i,j)(type.bav-i = type.bav-j)}

For technical convenience we extend the formerly defined function type to columns:

type : Column ⟼ BasTyp

We do not introduce constructors of columns since we will not need them. By a column yoke we mean a

predicate on columns:

coy : ColYok = Column ⟼ BooValE

Note that in contrast to yokes in Lingua defined in Sec. 4.4, column yoke return only boolean values or er-

rors (an engineering decision).

Column yokes may be simple or composed. Composed yokes are propositional compositions of simple

yokes. Similarly as in Sec. 4.4, propositional connectives in column yokes are Kleene’s connectives (Sec.

2.10). Simple column yokes are again split into two subcategories:

• quantified column-yokes — describing common properties of all elements of a column; e.g., that all

elements are greater than 10,

• holistic column-yokes — describing properties of columns “as a whole”; e.g., that a column is ordered

increasingly or that it is free of repetitions.

The names of constructors of column yokes will be prefixed by qcy for quantified yokes and by hcy for ho-

listic yokes. Similarly to yokes in Lingua, also column yokes will become the denotations of corresponding

expressions. Typical examples of column yoke constructors may be the following (in- stands for “integer”):

qcy-greater-in : BasVal ⟼ ColYok
qcy-less-in : BasVal ⟼ ColYok
qcy-equal : BasVal ⟼ ColYok

qcy-later : BasVal ⟼ ColYok
qcy-nonempty : ⟼ ColYok
…
hcy-ordered-lex : ⟼ ColYok lexicographically ordered

hcy-unique : ⟼ ColYok no repetitions
…
coy-and : ColYok x ColYok ⟼ ColYok conjunction of yokes

Let’s see the definition of the first quantified constructor. It builds a yoke which is satisfied if every data in a

column is of an integer type and is greater than a given integer:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 221

qcy-greater-in : BasVal ⟼ ColYok i.e.
qcy-greater-in : BasVal ⟼ Column ⟼ BooValE
qcy-greater-in.bav.col =
 let

((bad-1, bat),…,(bad-n, bat)) = col
(bad, v-bat) = bav

 bat /: IntTyp ➔ ‘integer type expected’
 (∀1≤i≤n)(greater-in.(dat-i, bad) ➔ tv
 true ➔ fv

Here greater-in denotes a comparison relation of integers from an implementation platform (see Sec. 4.1).

The definition of the first holistic constructor is the following:

hcy-unique : ⟼ ColYok
hcy-unique : ⟼ Column ⟼ BooValE
hcy-unique.().col =
 no-repetitions.col ➔ tv
 true ➔ fv

To define column types we first introduce a domain of column markings

com : ColMar = FinSub.(Identifier | {‘primary’}) column mark-

ings

A column marking is a finite, possibly empty, set of identifiers plus possibly the mark ‘primary’. We need

three constructors to build them:

com-build-empty : ⟼ ColMar
com-add-primary : ColMar ⟼ ColMar

com-add-ide : Identifier x ColMar ⟼ ColMar

We skip their obvious definitions. By a column type (OWN) we mean a quadruple

(bat, bav, yok, com) : BasTyp x BasVal x ColYok x ColMar

such that

type.bav = bat

The basic value bav is called the default value of the column type. By

cot : ColTyp column

types

we denote the domain of column types. Note that, again in contrast to Lingua types, column types include

yokes. Technically it is the consequence of the fact that we do not use references where yokes in Lingua are

located. Column types will be built by only one constructor:

ct-create : BasTyp x BasVal x ColYok x ColMar ⟼ ColTypE
ct-create.(bat, bav, coy, com) =
 type.bav ≠ bat ➔ ‘wrong type of default value’

true ➔ (bat, bav, coy, com).

We skip simple definition of column marking constructors. The clans of column types are defined as sets of

columns:

CLAN-ct : ColTyp ⟼ Set.Column

such that (bav-1,…,bav-n) : CLAN-ct.(bat, bav, coy, com) iff:

(1) type.(bav-1,…,bav-n) = bat — the common type of all values of the column is the

type indicated by the column type

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 222

(2) if data.bav ≠ Ω, then (∀i)(data.bav-i ≠ Ω) — if the default value of the column is not empty,

then all values of this column must not be empty,

although they do not need to be the default values,

(3) coy.(bav-1,…,bav-n) = tv — the column satisfies the column yoke,

(4) ‘primary’ /: com or
 no-repetitions.(bav-1,…,bav-n)

— there are no repetitions in a parent column

Practical implications of (4) will be explained in Sec. 11.2.5.

In the definitions of future table constructors we shall use the following function to check if a given col-

umn is of a given type. Note that this function not only checks the type-correctness of a column, but also

identifies categories of type violations whenever they occur. This fact is an important feature of our error

detection mechanism.

check-column-type : Column x ColTyp ⟼ {‘OK’} | Error
check-column-type.(col, cot) =
 let
 (bav-1,…,bav-n) = col
 (bat, bav, coy, com) = cot
 type.col ≠ bat ➔ ‘type inconsistency’ for i = 1;n
 data.bav ≠ Ω and data.bav-i = Ω ➔ ‘value must not be empty’ for i = 1;n
 coy.col : Error ➔ coy.col
 coy.col = fv ➔ ‘column yoke not satisfied’
 ‘primary’ : com and are-repetitions.col ➔ ‘repetitions in a parent column’
 true ➔ ‘OK’

Of course

CLAN-ct.cot = {cod | check-column-type.(cod, cot) = ‘OK’}

In the sequel we shall use the following auxiliary projection function:

marking : ColTyp ⟼ ColMar
marking.(bat, bav, coy, com) = com

11.2.3 Labeled rows and row yokes

Since row yokes will refer to column names, as e.g., in CHECK(bonus + salary < 10000), to define them we in-

troduce a concept of labeled rows (OWN):

lar : LabRow = Identifier ⟹ BasVal | {Ω} labeled

row104

Labeled rows will be also used in the definitions of table constructors. Row yokes are functions that given a

labeled row return a basic value or an error:

roy : RowYok = LabRow ⟼ BasValE row

yokes

Row yokes are used to describe common properties of all rows of a table. To make the reachable part of the

domain of row yokes rich enough, we allow them to return arbitrary basic values, rather than just boolean

values (cf. Sec. 4.4).

104 We shall not introduce anything like “row values” since we shall not need them; besides, labeled rows carry values
rather than data.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 223

Row yokes will become the denotations of row-yoke expressions, and the latter will be similar to simple-

value expressions. In their case, however, column names will stand in the place of variables, and they will

point to basic values directly rather than via references105. Constructors of row yokes refer to (call) simple-

value constructors and possibly some other special constructors otherwise not available at the level of expres-

sions.

Constructors of row yokes are similar to constructors of value-expression denotations. E.g., constructors

refereeing to addition and comparison of integers have the following signatures:

ry-add-int : RowYok x RowYok ⟼ RowYok
ry-less-int : RowYok x RowYok ⟼ RowYok

The definition of the first constructor is the following:

ry-add-int : RowYok x RowYok ⟼ RowYok i.e.
ry-add-int : RowYok x RowYok ⟼ LabRow ⟼ BasValE
ry-add-int.(roy-1, roy-2).lar =
 roy-i.lar : Error ➔ roy-i.lar for i = 1,2
 let
 bav-i = roy-i.lar for i = 1,2
 (dat-i, typ-i) = bav-i for i = 1,2
 typ-i /: IntTyp ➔ ‘integer expected’ for i = 1,2
 true ➔ td-add-int.(bav-1, bav-2)

In this definition td-add-int is an integer addition of typed data (Sec. 4.3). Note that it may generate an error

message.

11.2.4 Tables and their types

Tables are central concept in SQL. Intuitively our tables will consist of a table type and a two-dimensional

array of basic values called a table-content. However, depending on a table constructor, which we shall apply

to a table, we shall regard table content as a tuple of labeled columns called a column table-content (OWN)

or a tuple of labeled rows called a row table-content (OWN). To formalize these two perspectives of seeing a

table we introduce two following domains:

ctc : ColTabCon = Identifier ⟹ Column column table-

contents

rtc : RowTabCon = LabRowc+ row table-

contents

By a rectangular column table-content we mean a column table-content where all columns are of the same

length. In an analogous way we define rectangular row table-content and we introduce two corresponding

domains:

ctc : ReColTabCon rectangular column table-

contents

rtc : ReRowTabCon rectangular row table-

contents

By the depth of a column table-content, in symbols

depth.ctc

we mean the common length of its columns.

By a table header (OWN) we mean a nonempty mapping assigning column types to column names. By a

table type (OWN) we mean a pair consisting of a table header and a row yoke.

105 We do not introduce reference in the SQL-part of our model since database value will not appear in objects. We
return to this issue in Sec. 11.2.6.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 224

tah : TabHea = Identifier ⟹ ColTyp table head-

ers

tat : TabTyp = TabHea x RowYok table

types

Table types are built by three constructors. The first of them creates a one-column table header.

create-tab-hea : Identifier x ColTyp ⟼ TabHea
create-tab-hea.(ide, cot) = [ide/cot]

The second constructor adds a new column to an existing table header:

add-to-tab-hea : TabHea x Identifier x ColTyp ⟼ TabHea
add-to-tab-hea.(tah, ide, cot) =

tah.ide = ! ➔ ‘column name already exists’
true ➔ tah[ide/cot]

The third constructor creates a table type by adding a row yoke to a table header:

create-tab-typ : TabHea x RowYok ⟼ TabTyp
create-tab-typ.(tah, roy) = (tah, roy).

Given a table type with n columns:

tat = ([ide-1/cot-1,…,ide-m/cot-n], roy) where

cot-i = (bat-i, bav-i, coy-i, com-i) for i = 1;n

by the clan of this type, denoted by CLAN-tt.tat, we mean the set of all rectangular column table-contents

with n columns named by the ide-i’s of tat, i.e.,

ctc = [ide-1/col-1,…,ide-n/col-n] where

col-i = (bav-i1,…,bav-ik) for i = 1;n and some common k ≥ 1

such that

(1) each column is of the corresponding column type , i.e.

col-i : CLAN-ct.cot-i for i = 1;n,

(2) all labelled rows of the table satisfy the row yoke of the table type, i.e.

roy.[ide-1/bav-1j,…,ide-n/bav-nj] = tv for j = 1;k

By a table we shall mean a pair consisting of a rectangular column table-content and its type:

tab : Table = {(ctc, tat) | ctc : CLAN-tt.tat} ta-

bles

Similarly as in the case of column types, also now we define a function that checks if a column table-content

is of a given table type:

type-table-check : ColTabCon x TabTyp ⟼ {‘OK’} | Error
type-table-check.(ctc, tat) =
 let
 [ide-1/col-1,…,ide-n/col-n] = ctc
 (bav-i1,…,bav-ik) = col-i for i = 1;n
 [ide-1/cot-1,…,ide-n/cot-n] = tat
 [ide-1/bav-1j,…,ide-n/bav-nj] = lar-j for j = 1;k

check-column-type.(col-i, cot-i) ≠ ‘OK’ ➔ check-column-type.(col-i, cot-i)
 roy.lar-j : Error ➔ roy.lar-j for j = 1;k
 roy.lar-j = fv ➔ ‘row yoke violated’
 true ➔ ‘OK’

In the sequel we shall use two following functions to “switch” between two perspectives of seeing tables:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 225

C2R : ReColTabCon ⟼ ReRowTabCon column-to-row conver-

sion

C2R.[ide-1/col-1,…,ide-n/col-n] =
 let
 (bav-1i,…,bav-ki) = col-i for i = 1;n
 lar-j = [ide-1/bav-j1,…,ide-n/bav-jn] for j = 1;k
 true ➔ (lar-1,…, lar-k)

R2C : ReRowTabCon ⟼ ReColTabCon row-to-column conver-

sion

R2C.(rod-1,…,rod-k) =
 let
 [ide-1/bav-j1,…,ide-n/bav-jn] = lar-j for j = 1;k
 col-i = (bav-1i,…,bav-ki) for i = 1;n
 true ➔ [ide-1/col-1,…,ide-n/col-n]

Of course, each of these function is an inverse of the other, which means that the following functions are

identities:

C2R ● R2C
R2C ● C2R

11.2.5 Databases and their subordination relations

By a database we shall mean a mapping assigning tables to their names:

dab : DatBas = Identifier ⟹ Table.

Databases, similarly to tables, belong to the category of values since they combine data and types. The types

of databases are implicit in the types of their tables and carry two kinds of information:

• pieces of information about individual tables, saved in the types of columns (except column markings)

and in row yokes,

• information about subordination relationships between tables, saved in column markings.

To define the relationships between tables, consider a database dab, two identifiers ch-ide and pa-ide which

are the names of two tables in this base and an identifier co-ide which is a common name of two columns of

these tables. Let further:

ch-tab = dab.ch-ide child ta-

ble
(ch-ctc, (ch-tah, ch-roy)) = ch-tab
ch-col = ch-ctc.co-ide child col-

umn

(ch-bat, ch-bav, ch-coy, ch-com) = ch-tah.co-ide child-column

type

pa-tab = dab.pa-ide parent ta-

ble
(pa-ctc, (pa-tah, pa-roy)) = pa-tab parent col-

umn
pa-col = pa-ctc.co-ide
(pa-bat, pa-bav, pa-coy, pa-com) = pa-tah.co-ide parent-column

type

We say that a content-subordination relation (OWN) holds between our tables via column name co-ide that

we shall write as

ch-ide content-subordinated [co-ide] pa-ide,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 226

if two following conditions are satisfied:

1. the child column ch-col contains only such elements that are included in the parent column,

2. the parent column pa-col is repetition-free.

In such a case we shall say that:

• ch-tab is a child table, pa-dab is its parent table and co-ide is their subordination connector,

• ch-tab.co-ide is a child column, pa-tab.co-ide is its parent column,

The conjunction of 1. and 2. implies that each row of the child table unambiguously identifies — points to —

a row in the parent table. Why we formally define the subordination between the names of tables rather than

between the tables themselves will be seen in a moment.

In Fig. 11.2-1, we see an example of two tables (we show only their contents) which are in a content-

subordination relation:

Employees content-subordinated [Department] Affiliations

Fig. 11.2-1 Employees is a child of Affiliations via Department

Notice that there may be some elements in a parent column that do not appear in the corresponding child col-

umn, e.g., departments with no employees. It is also possible that a child column for one table is, at the same

time, a parent or a child column for another table, or that it is a child column for more than one table. How-

ever, we exclude cases where a table is a child of itself, although cycles are allowed. And, of course, one par-

ent may have many children.

Note now that an existing subordination relation between two tables may be destroyed when we modify one

of these tables, e.g. if to a child column we add a value that does not appear in the parent column, or if we

remove or change a value in a parent column. To prevent such situations whenever a subordination is critical,

SQL offers a column marking mechanism, allowing programmers to mark a column as a child or a potential

parent.

We have seen examples of such markings in Sec. 10.3 where:

• child table Employees includes column Department_ID marked as a child by REFERENCES Affiliations,

• parent table Affiliations includes column Department_ID marked as a parent by PRIMARY KEY.

To include this mechanism in our model we introduce a second relation between tables called a marking-

subordination relation written as

ch-ide marked-subordinated [ide] pa-ide,

which holds if:

• pa-ide : ch-com; in this case we say that:

o column ch-tab.co-ide is marked to be a child of parent column pa-tab.co-ide,

o table ch-tab is marked to be a child of parent table pa-tab,

• ‘primary’ : pa-mar; in this case we say that:

o column pa-tab.co-ide is marked to be a parent column,

o table pa-tab is marked to be a parent table.

Note that child marking specifies parents, whereas parent marking does not specify children. Two tables are

said to be in a subordination relation via co-ide, in symbols

Employees

Name Department

Fog Distribution

Pickwick Distribution

Weller Kitchen

Affiliations

Department City

Distribution London

Bookkeeping Manchester

Kitchen Edinburgh

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 227

ch-ide subordinated [co-ide] pa-ide

if both corresponding relations hold, i.e., if

• ch-ide content-subordinated [co-ide] pa-ide, and

• ch-ide marked-subordinated [co-ide] pa-ide.

A database is said to be consistent (OWN) if all tables marked as subordinated are content subordinated, alt-

hough not necessarily vice-versa. Contents of two tables may “happen to be subordinated,” but if they are not

marked as subordinated, the SQL engine does not need to protect their subordination. In the opposite case

potential consistency violation must be prevented either by signalizing an error and aborting program execu-

tion or by an appropriate modifications of tables. These mechanisms will be described in Sec. 11.3.4.

Since the types of tables in a database describe user-defined properties of the database, they are called in-

tegrity constraints of the database.

If a column marking of a column named co-ide includes a parent-table name pa-ide then the pair of iden-

tifiers (co-ide, pa-ide) is called a coupling pair.

The following operations on tables may violate database consistency:

1. when we modify a column marked as a parent:

a. a violation of repetition-freeness of the column; this situation may happen if we:

i. add a new row to the table, i.e., add a new value to the column,

ii. replace a value in the column by another value,

b. a violation of parent adequacy of the column; this situation may happen if we:

i. remove a row from the table, i.e., remove a value from the column,

ii. replace a value in the column by another value,

2. when we modify a column marked as a child:

a. a violation of child adequacy of the column; this situation may happen if we:

i. add such a row to the table that the value added to the column does not appear in the

parent column,

ii. replace a value in the column by a value that does not appear in the parent.

In the sequel, all operations on tables will be defined in such a way that the consistency of a databases will be

secured either by aborting a consistency-braking action or by initiating a cascade of recovery actions. The

following auxiliary function will be used to check if the subordination relation holds in a database between

three identifiers. This function returns either a truth value tv or an error message that indicates why the rela-

tion does not hold.

subordination : DatBas x Identifier x Identifier x Identifier ⟼ {‘OK’} | Error
subordination.(dab, ch-ide, pa-ide, co-ide) =
 dab.ch-ide = ? ➔ ‘no child table in the base’
 dab.pa-ide = ? ➔ ‘no parent table in the base’
 let for i = 1;n
 (ch-ctc, ch-tat) = dab.ch-ide
 (ch-tah, ch-roy) = ch-tat
 (pa-ctc, pa-tat) = dab.pa-ide
 (pa-tah, pa-roy) = pa-tat
 ch-tah.co-ide = ? ➔ ‘no such column in child’
 pa-tah.co-ide = ? ➔ ‘no such column in parent’
 let
 ch-col = ch-ctc.co-ide child column

(ch-bat, ch-bav, ch-coy, ch-com) = ch-tah.co-ide
pa-col = pa-ctc.co-ide parent column

 (pa-bat, pa-bav, pa-coy, pa-com) = pa-tah.co-ide
 ‘primary’ /: pa-com ➔ ‘parent not marked’
 pa-ide /: ch-com ➔ ‘parent not expected’
 are-reperitions.pa-col ➔ ‘repetitions in parent column’

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 228

 elements.ch-col /⊆ elements.pa-col ➔ ‘missing elements in parent column’
 true ➔ ‘OK’

Of course

ch-ide subordination [co-ide] pa-ide holds in dba iff

subordination.(dab, co-ide, ch-tab, pa-tab) = ‘OK’.

One of typical cases when a database is not consistent is when some of its child-marked tables are orphans.

A column named co-ide is a column orphan of a parent table named pa-ide if it is marked as a child of

pa-ide but content-wise it is not its child. A table is said to be a table orphan of another table if it includes a

column orphan of that other table. Note that only children may be orphans.

The following function checks if a given column is an orphan in a given table, and if that is the case, it de-

scribes the cause. Precisely speaking, it first checks if the given column is marked as a child and, if that is the

case — if it is an orphan of one of its indicated parents. Note that this function returns ‘OK’ if the tested col-

umn is not an orphan. This “reaction” seems adequate, since we do not want orphans in our databases.

col-is-orphan : DatBas x Identifier x Identifier ⟼ {‘OK’} | Error
col-is-orphan.(dab, ta-ide, co-ide) =
 dab.ta-ide = ? ➔ ‘no such table’
 let
 (ctc, tat) = dab.ta-ide
 (tah, roy) = tat
 tah.co-ide = ? ➔ ‘no such column’
 let
 (bat, bav, coy, com) = tah.co-ide
 ch-col = ctc.co-ide
 parents = com – {‘primary’} the set of parents’

names

 parents = {} ➔ ‘OK’
 let
 {pa-ide-1,…,pa-ide-n} = parents
 dab.pa-ide-i = ? ➔ ‘parent not in the base’ for i = 1;n

 let
(pa-ctc-i, pa-tat-i) = dab.pa-ide-i for i = 1;n

 pa-ctc-i.co-ide = ? ➔ ‘column not in the parent’ for i = 1;n
 let

pa-col-i = pa-ctc-i.co-ide for i = 1;n

 elements.ch-col /⊆ elements.pa-col-i ➔ ‘inadequate parent column’ for i = 1;n
 true ➔ ‘OK’ column is not an or-

phan

As we see, a column may be an orphan if it is a child and:

• its expected parent table does not exist in the database,

• its expected parent exists, but the expected column does not exist in it,

• the expected column exists, but is not adequate.

The following predicate checks if a table is an orphan of one of its parents:

tab-is-orphan : DatBas x Identifier ⟼ {‘OK’} | Error
tab-is-orphan.(dab, ta-ide) =
 dab.ta-ide = ? ➔ ‘no such table’
 let
 tab = dab.ta-ide

(ctc, tat) = tab
 {ide-1,…,ide-n} = dom.ctc

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 229

 col-is-orphan.(dab, ta-ide, ide-i) : Error ➔ col-is-orphan.(dab, ta-ide, ide-i) for i = 1;n
 true ➔ ‘OK’ table is not an or-

phan

Subsequent predicate checks if for a column marked as a parent there are its children that are orphans:

col-has-orphan : DatBas x Identifier x Identifier ⟼ {‘OK’} | Error
col-has-orphan.(dab, pa-ide, co-ide) =
 dab.pa-ide = ? ➔ ‘no such table’
 let
 {ide-1,…,ide-n} = dom.dab the names of all tables in the current base

 (ctc-i, (tah-i, roy-i)) = dab.ide-i for i = 1;n
 (ctc, (tah, roy)) = dab.pa-ide

tah.co-ide = ? ➔ ‘no such column’
‘primary’ /: marking.(tah.co-ide) ➔ ‘column is not a parent’

 are-repetitions.(ctc.co-ide) ➔ ‘parent not repetition-free’
 (∃i) (ide-i : marking.(tah.co-ide) and
 ctc-i.co-ide = ! and

 elements.(ctc-i.co-ide) /⊆ elements.(ctc.co-ide)) ➔ ‘orphan exists’
 true ➔ ‘OK’ no or-

phans

11.2.6 States

Intuitively, the enrichment of Lingua to Lingua-SQL consists in adding some new mechanisms to our lan-

guage, whereas all former mechanisms are retained. There seem to be two alternative solutions to achieve

this goal:

1. an enlargement of the domains of values, types and references by new elements whereas the structure

of states remain unchanged,

2. an expansion of the structure of states by SQL components carrying storable SQL entities.

We chose the second solution since it seems more convenient to show, on the one hand, the borderline be-

tween the source language and its SQL part and, on the other — an interface between these two components.

We assume, therefore, that our new states will be pairs:

nes : NewSta = State x SqlSta

consisting of a former state, which we shall call a hereditary component, and a SQL component that will car-

ry tables, databases and transactions. We take the following introductory assumptions about our SQL model:

1. Time-and-date data, types and typed data will be included into Lingua domains of simple data, types

and typed data respectively. Consequently variables pointing to these typed data will be stored in he-

reditary components of states.

2. SQL types and yokes will not be storable.

3. We do not introduce a covering relation between SQL types; types compatibility simply means that the

involved types must be equal.

4. We shall not introduce expressions that generate tables and databases. Both will be created by declara-

tion and then assigned to appropriate variables.

5. In SQL stores, tables and databases, will be assigned to variables directly, rather than via references.

We do not introduce references in the SQL part of our model since objects will not carry neither tables

nor databases.

6. Tables and databases will be public.

The domain of SQL states is defined as follows:

sta : SqlSta = TraEnv x SqlSto SQL

states

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 230

tre : TraEnv = Identifier ⟹ Transaction transaction environ-

ments

sto : SqlSto = Database x DbaRep x Monitor SQL

stores

dbs : DbaRep = Identifier ⟹ Database database reposito-

ry

mon : Monitor = Identifier | {Ω} moni-

tors

Transactions are blocks of table-modifying instructions and will be described in Sec. 11.3.4.3.

The (unique) database that is a component of an SQL store is the currently active database, and its tables

are called active tables. We assume that only one database may be active at a time. Database repository binds

databases that are available but currently not active.

The monitor is either a name of an active table, which means that this table is displayed on a computer

monitor, or is Ω, which means that the monitor does not display anything. A typical new state is, therefore, of

the following form:

(((cle, tye, cov), (obn, dep, ota, sft, err)), (tre, (dab, dbr, mon)))

A new state is said to be well-formed, if:

1. its hereditary component is well-formed (Sec. 5.3),

2. every identifier appearing in a new state, appears in it only once,

3. the active database and all databases in the repository are consistent.

The set of well-formed new states will be denoted by

WfNewSta

Functions is-error, error, ◄ and declared (Sec. 5.3) are extended to new states in an obvious way.

11.3 The algebra of denotations

11.3.1 Replicated denotations and their constructors

To incorporate in our model the rule that all the mechanism of Lingua are retained in Lingua-SQL, we in-

troduce the concept of a replicated denotation. Given a state-dependent denotation of Lingua, e.g., an imper-

ative denotation

den : WfState → WfState

by the replica of den, we mean the following function on new states:

R[den] : WfNewState → WfNewState
R[den].(sta, sql-sta) =
 den.sta = ? ➔ ?
 true ➔ (den.sta, sql-sta)

A denotation is said to be a replicated denotation if it is a replica of a Lingua denotation. Replicated applica-

tive denotations, i.e., the denotations of expressions, are defined in an analogous way.

Replicas of state-independent denotations, i.e., of primitive denotations (cf. Sec. 6.1) and yoke-expression

denotations, are just these denotations.

Now, with every domain Den of Lingua denotations we associate a corresponding domain of replicated

denotations:

R[Den] = {R[den] | den : Den}

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 231

Carrier R[Den] is called a replica of the source carrier Den. Further on, with every Lingua constructor of

denotations

cons : Den-1 x … x Den-n ⟼ Den

we associate a replica of this constructor defined in the following way:

R[cons] : R[Den-1] x … x R[Den-n] ⟼ R[Den]
R[cons].(R[den-1],…,R[den-n]) = R[cons.(den-1,…,den-n)]

Note that this definition is correct, since R is a 1-1 function. The following example illustrates the idea of

replication:

while : ValExpDen x InsDen ⟼ InsDen

R[while] : R[ValExpDen] x R[InsDen] ⟼ R[InsDen]

R[while].(R[ved], R[ins]) = R[while.(ved, ind)] i.e.

R[while].(R[ved], R[ins]).(sta, sql-sta) =
 while.(ved, ins).sta = ? ➔ ?
 true ➔ (while.(ved, ins).sta, sql-sta)

In Sec. 6.1, by AlgDen we have denoted the algebra of denotations of Lingua. Let AlgDenSQL denote our

future algebra of Lingua-SQL denotations. We assume that all constructors of AlgDen will have their corre-

sponding replicas in AlgDenSQL which implies that all reachable denotations of AlgDen will have their

replicas in AlgDenSQL. The remaining denotations and their constructors will correspond to SQL mecha-

nisms, and will be described in the subsequent sections.

11.3.2 The carriers of the algebra of denotations

In our new algebra of denotations AlgDenSQL we are going to have three categories of carriers:

1. all primitive carriers of the former algebra plus two new primitive carriers of check settings and col-

umn markings,

2. the replicas of all carriers of state-dependent denotations of the former algebra,

3. new SQL carriers.

Metavariables running over replicated domains will be denoted by the same symbols as for the corresponding

original domains.

Primitive carriers

ide : Identifier = … identifi-

ers

prs : PriSta = {‘private’, ‘public’} privacy statuses indica-

tors

loi : ListOfIde = Identifierc* lists of identifi-

ers
cli : ClaInd = {‘empty-class’} | Identifier class indica-

tors
chs : CheSetting = {‘restrict’, ‘cascade’} check set-

tings

com : ColMar = FinSub.(Identifier | {‘primary’}) column mark-

ings

Applicative carriers

yok : R[YokExpDen] = Yoke yoke-expression denota-

tions
ted : R[TypExpDen] = WfNewSta ⟼ TypeE replicated type-expression denota-

tions

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 232

ved : R[ValExpDen] = WfNewSta → ValueE replicated value-expression denota-

tions

btd : BasTypExpDen = WfNewSta → BasTypE basic-type expression denota-

tions

red : RowExpDen = WfNewSta → LabRowE row expression denota-

tions

ryd : RowYokExpDen = WfNewSta → RowYokE row-yoke expression denota-

tions

cyd : ColYokExpDen = WfNewSta → ColYokE column-yoke expression denota-

tions

cmd : ColMarExpDen = ColMar column-marking expression denota-

tions

ctd : ColTypExpDen = WfNewSta → ColTyp column-type expression denota-

tions
thd : TabHeaExpDen = WfNewSta → TabHeaE table-header expression denota-

tions

ttd : TabTypExpDen = WfNewSta → TabTypE table-type expression denota-

tions

Imperative carriers

dcd : R[DecDen] = WfNewSta → WfNewSta replicated declaration denota-

tions

pod : R[ProOpeDen] = WfNewSta ⟼ WfNewSta replicated procedure opening denota-

tion
ctc : R[ClaTraDen] = Identifier ⟼ WfNewSta → WfNewSta repl. class-trans. denota-

tions

ind : R[InsDen] = WfNewSta → WfNewSta replicated instruction denota-

tions
ppd : R[ProPreDen] = WfNewSta → WfNewSta replicated program preamble denota-

tions
prd : R[ProDen] = WfNewSta → WfNewSta replicated program denota-

tions

tdd : TabDecDen = WfNewSta ⟼ WfNewSta table-declaration denota-

tion

nid : NewInsDen = WfNewSta → WfNewSta new instruction denota-

tions

Declaration-oriented carriers

dse : R[DecSec] = ListOfIde x R[TypExpDen] new declaration sec-

tions

fpd : R[ForParDen] = R[DecSec]c* new formal-parameter-

denotations
apd : ActParDen = ListOfIde new actual-parameter-

denotations

Signature carriers

ips : R[ImpProSigDen] = R[ForParDen] x R[ForParDen] new imperative-procedure sig.

den.
fps : R[FunProSigDen] = R[ForParDen] x R[TypExpDen] new functional-procedure sig.

den.

ocs : R[ObjConSigDen] = R[ForParDen] x Identifier new object-constructor signature

den.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 233

The constructors of our new algebra include replicas of all former constructors, plus some new constructors

that we shall call SQL constructors. In the following sections we shall define a few most typical examples of

SQL constructors.

11.3.1 Constructors of primitive denotations

The only new constructors in this category are constructors of column markings. We shall need two such

constructors:

com-create-ma.mar : ⟼ ColMar for every mar : Mark
com-add-ma : ColMar x Mark ⟼ ColMarE

Where

mar : Mark = Identifier | {‘primary’}

We skip obvious definitions of our constructors.

11.3.2 Expressions

11.3.2.1 Categories of SQL expressions

Whereas in the case of Lingua we had only three categories of expressions — value expressions, type ex-

pressions and yoke expressions — in Lingua-SQL we add eight new categories:

1. basic-type expressions,

2. row expressions,

3. row-yoke expressions,

4. column-yoke expressions,

5. column-marking expressions,

6. column-type expressions,

7. table-header expressions,

8. table-type expressions.

11.3.2.2 Basic-type expressions

Although we have assumed (Sec. 11.2.6) that basic types are not storable (an engineering decision) their de-

notations must be functions on states, since decimal- and character types include integers, that we have to

“somehow generate”. For this sake we shall use value expressions106.

btd : BasTypExpDen = WfNewSta → BasTypE

Integers needed in building types are computed by means of the replicas of value expressions, e.g.,

btd-create-decimal : R[ValExpDen] x R[ValExpDen] ⟼ BasTypExpDen i.e.
btd-create-decimal : R[ValExpDen] x R[ValExpDen] ⟼ WfNewSta → BasTypE
btd-create-decimal.ved-1.ved-2.nes =
 is-error.nes ➔ error.nes
 ved-i.nes = ? ➔ ? for i = 1,2
 let
 val-i = ved-i.nes for i = 1,2
 val-i : Error ➔ val-i for i = 1,2
 sort-t.val-i ≠ ‘integer’ ➔ ‘integer expected’ for i = 1,2

106 This solution is, maybe, a little “too far going” since we essentially do not need the “whole power” of value expres-

sions to calculate constants indicating the sizes of decimal and character types. However, an alternative solution would

be introducing a particular category of expressions generating these constants, thus complicating our model even

more.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 234

 val-i < 0 or val-i > max-i ➔ ‘parameter out of scope’ for i = 1,2
 true ➔ (‘De’, val-1, val-2)

where max-i’s are parameter indicating maximal numbers in decimal types. The definitions of remaining

constructors of the category are analogous.

11.3.2.3 Row expressions

The denotations of row expressions, given states return labelled rows:

red : RowExpDen = WfNewSta ⟼ LabRowE

The first constructor of these denotations creates a denotation that given a state creates a one-element row

with empty field:

red-build-empty-field-row : Identifier ⟼ RowExpDen i.e.

red-build-empty-field-row : Identifier ⟼ WfNewSta → LabRowE
red-build-empty-field-row.ide.nes = [ide/Ω]

Next constructors builds a denotation that creates a one-element row data with a non-empty field:

red-build-nonempty-field-row : Identifier x R[ValExpDen] ⟼ RowExpDen i.e.
red-build-nonempty-field-row : Identifier x R[ValExpDen] ⟼ WfNewSta → LabRowE
red-build-nonempty-field-row.ide.ved.nes =
 is-error.nes ➔ error.nes
 ved.nes = ? ➔ ?
 ved.nes : Error ➔ ved.nes
 let
 val = ved.nes
 sort-t.val /: BasTyp ➔ ‘basic-type expected’
 true ➔ [ide/val]

The third constructor corresponds to adding an empty field to a row data:

red-add-empty-field : Identifier x RowExpDen ⟼ RowExpDen i.e.
red-add-empty-field : Identifier x RowExpDen ⟼ WfNewSta → LabRowE
red-add-empty-field.ide.red.nes =
 is-error.nes ➔ error.nes
 red.nes = ? ➔ ?
 red.nes : Error ➔ red.nes
 let
 lar = red.nes
 red.ide = ! ➔ ‘identifier already bound’
 true ➔ red[ide/Ω]

The last constructor corresponds to adding a nonempty field to a row data:

red-add-nonempty-field : Identifier x R[ValExpDen] x RowExpDen ⟼ RowExpDen

We skip its obvious definition.

11.3.2.4 Column-yoke expressions

Column-yoke expressions generate column yokes and therefore their denotations constitute the following

domain:

cyd : ColYokExpDen = WfNewSta → ColYokE

Similarly as in Sec. 6.4.2 the constructors of column-yoke expression denotations are derived from corre-

sponding yoke constructors. We give two examples to illustrate this idea.

cyd-qcy-greater-in : R[ValExpDen] ⟼ ColYokExpDen i.e.
cyd-qcy-greater-in : R[ValExpDen] ⟼ WfNewSta → ColYokE

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 235

cyd-qcy-greater-in.ved.nes =
 is-error.nes ➔ error.nes
 ved.nes = ? ➔ ?
 let
 val = ved.nes
 val : Error ➔ val
 true ➔ qcy-greater-in.val

This constructor builds a denotation that generates a quantified yoke that checks if all elements of a column

are greater than a given integer. Next constructor builds a denotation that generates a holistic yoke that check

if a column has repetitions

cyd-hcy-unique : ⟼ ColYokExpDen
cyd-hcy-unique : ⟼ WfNewSta → ColYokE
cyd-hcy-unique.().nes = hcy-unique.()

11.3.2.5 Row-yoke expressions

Analogously to the former expressions row-yoke expressions evaluate to row yokes:

ryd : RowYokExpDen = WfNewSta → RowYokE

The following constructor builds a denotation that generates a row yoke that adds two integers generated by

two given row yokes:

ryd-add-int : RowYokExpDen x RowYokExpDen ⟼ RowYokExpDen i.e.
ryd-add-int : RowYokExpDen x RowYokExpDen ⟼ WfNewSta → RowYokE
ryd-add-int.(ryd-1, ryd-2).nes =
 is-error.nes : Error ➔ error.nes
 ryd-i.nes = ? ➔ ? for i = 1,2

ryd-i.nes : Error ➔ ryd-i.nes for i = 1,2
 let
 roy-i = ryd-i.nes for i = 1,2
 true ➔ ry-add-in.(roy-1, roy-2)

11.3.2.6 Column-marking expressions

Column-marking expressions are state-independent and therefore their denotations are just column markings

cmd : ColMarExpDen = ColMar

and their constructors are column-marking constructors defined in Sec. 11.2.2.

11.3.2.7 Column-type expressions

Column-type expressions evaluate to column types:

ctd : ColTypExpDen = WfNewSta → ColTypE

We need only one constructor to build their denotations:

ctd-create : BasTypExpDen x ValExpDen x ColYokExpDen x ColMarExpDen ⟼ CalTypExpDen

ctd-create : BasTypExpDen x ValExpDen x ColYokExpDen x ColMarExpDen ⟼
 WfNewSta → ColTypE
ctd-create.(btd, ved, cyd, cmd).nes =
 is-error.nes ➔ error.nes
 btd.nes = ? ➔ ?
 ved.nes = ? ➔ ?
 cyd.nes = ? ➔ ?
 let
 bat = btd.nes

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 236

 val = ved.nes
 cyd = cyd.nes
 bat : Error ➔ bat
 val : Error ➔ val
 cyd : Error ➔ cyd
 sort-t.val ≠ bat ➔ ‘inconsistent types’
 true ➔ (bat, val, cyd, com)

11.3.2.8 Table-header expressions

Table-header expressions evaluate to table headers (Sec. 11.2.4):

thd : TabHeaExpDen = WfNewSta → TabHeaE

We need two constructors to build them

thd-create : Identifier x ColTypExpDen ⟼ TabHeaExpDen
thd-add-column : Identifier x ColTypExpDen x TabHeaExpDen ⟼ TabHeaExpDen

We skip their obvious definitions.

11.3.2.9 Table-type expressions

Table-type expressions evaluate to table types:

ttd : TabTypExpDen = WfNewSta → TabTypE

They are built by one constructor:

ttd-create : TabHeaExpDen x RowYokExpDen ⟼ TabTypExpDen

Its definition is obvious.

11.3.3 Declarations of table variables

A declaration of a table variable builds a one-row table with default values and assigns this table to an identi-

fier in the active database. If the declared table expects parents then the declaration checks if such parents

exist in the base. A consequence of this rule is that parents must be declared and filled with values prior to

the declarations of their children (which makes sense biologically as well!).

declare-table : Identifier x TabTypExpDen ⟼ TabDecDen i.e.

declare-table : Identifier x TabTypExpDen ⟼ WfNewSta → WfNewSta
declare-table.(ta-ide, ttd).nes =
 is-error.nes ➔ nes

declared.ta-ide.nes ➔ nes ◄ ‘variable already declared’
ttd.nes = ? ➔ ?
ttd.nes : Error ➔ ttd.nes
let

(sta, (tre, (dab, dbr, mon))) = nes
tat = ttd.nes

 ([ide-1/cot-1,…,ide-n/cot-n], roy) = tat
 (bat-i, bav-i, cyd-i, com-i) = cot-i for i = 1;n column

types

 ctc = [ide-1/bav-1,….,ide-n/bav-n] column table-

content

tab = (ctc, tat)
new-dab = dab[ta-ide/tab]

tab-is-orphan.(new-dab, ta-ide) : Error ➔ nes ◄ tab-is-orphan.(dab, ta-ide)
true ➔ (sta, (tre, (new-dab, dbr, mon)))

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 237

The inspection of the definition of col-is-orphan.(dab, ta-ide, ide-i) in Sec. 11.2.5 shows that it generates

an error only if ta-ide is not in dab, which in our case can’t happen. Note also that the declared table is con-

formant with its type.

11.3.4 Instructions

11.3.4.1 Row-oriented table instructions

The first constructor adds a row to a declared table. The new row is generated as a new labelled row by a row

expression, and then every value in this row is added to a corresponding column. Two categories of type

checks are necessary in this operation:

1. checking if the new table does not violates its type integrity,

2. checking if the new table does not violate the database consistency, which may happen if we add a

new element to a child column which makes the new column an orphan.

Add a row to a table

nid-add-ro-to-ta : Identifier x RowExpDen ⟼ NewInsDen i.e.
nid-add-ro-to-ta : Identifier x RowExpDen ⟼ WfNewSta → WfNewSta
nid-add-ro-to-ta.(ta-ide, red).nes =

is-error.nes ➔ nes
let
 (sta, (tre, (dab, dbr, mon))) = nes
dab.ta-ide = ? ➔ ‘no such table’
red.nes = ? ➔ ?
red.nes : Error ➔ nes ◄ red.nes
let

tab = dab.ta-ide
(ctc, tat) = tab
[ide-1/col-1,…,ide-n/col-n] = ctc table-content to be modi-

fied

lar = red.nes labeled row to be add-

ed

 dom.lar ≠ {ide-1,…,ide-n} ➔ ‘incorrect row identifiers’
 let
 new-val-i = lar.ide-i for i = 1;n

new-col-i = col-i @ (new-val-i) for i = 1;n
 new-ctc = [ide-1/new-col-1,…,ide-n/new-col-n] new column table-

content

 tab-message = type-table-check.(new-ctc, tat) (Sec.

11.2.4)
tab-message : Error ➔ nes ◄ tab-message

 let
 ([ide-1/cot-1,…,ide-n/cot-n], roy) = tah
 (bat-i, bav-i, coy-i, com-i) = cot-i for i = 1;n

new-tab = (new-ctc, tat)
col-is-orphan.(dab, ta-ide, ide-i) : Error ➔ nes ◄ col-is-orphan.(dab, ta-ide, ide-i)

 true ➔ (sta, (tre, (dab[ide/new-tab], dbr, mon)))

Note that if at any stage of our table modification an error message is raised, then it is loaded to the error reg-

ister of the initial state, which means that the initial database remains unchanged and the intended modifica-

tion is abandoned.

All constructors that follow will be defined according to the following scheme:

1. the transformation of a column content of a table into a row content,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 238

2. a modification of the row content by an appropriate constructor of labelled rows,

3. the transformation of the resulting row content into a new column content,

4. checking integrity constraints of the new table,

5. checking integrity constraints of the new database and possibly initiating a cascade action.

Remove from a table all rows that satisfy a given yoke

nid-cut-ro-from-ta : RowYokExpDen x Identifier x CheSetting ⟼ NewInsDen i.e.
nid-cut-ro-from-ta : RowYokExpDen x Identifier x CheSetting ⟼ WfNewSta → WfNewSta
nid-cut-ro-from-ta.(ryd, ta-ide, chs) =

is-error.nes ➔ nes
let
 (sta, (tre, (dab, dbr, mon))) = nes
dab.ta-ide = ? ➔ ‘no such table’
ryd.nes = ? ➔ ?
ryd.nes : Error ➔ ryd.nes
let
 roy = ryd.nes
 (ctc, tat) = dab.ide
 (lar-1,…,lar-k) = C2R.ctc
k = 1 ➔ nes ◄ ‘single row can’t be removed’
let

 rtc = drop-rows.(roy, (lar-1,…,lar-k)) row-table-content of the new ta-

ble

new-ctc = R2C.rtc new column table-

content

 tab-message = type-table-check.(new-ctc, tat)
tab-message : Error ➔ nes ◄ tab-message
let

 new-tab = (new-ctc, tat)
 new-dab = dab[ta-ide/new-tab]
 [ide-1/col-1,…,ide-n/col-n] = new-ctc
 (tah, roy) = tat
 [ide-1/cot-1,…,ide-n/cot-n] = tah
 (bat-i, bav-i, coy-i, com-i) = cot-i for i = 1;n
 each of new parent columns may have orphans

 col-has-orphan.(new-dab, ta-ide, ide-i) ≠ ‘OK’ and for i = 1;n
 col-has-orphan.(new-dab, ta-ide, ide-i) ≠ ‘column is not a parent’ ➔

chs = ‘restrict’ ➔ nes ◄ col-has-orphan.(new-dab, ta-ide, ide-i)
 chs = ‘cascade’ ➔ … cascading removal of orphans in the table

 true ➔ (sta, (tre, (new-dab, dbr, mon)))

This constructor first transforms the given column content of the table into a row content. From this content it

removes all labelled rows that satisfy the yoke. This action is performed by using an auxiliary function drop-
rows; we skip its formal definition. The resulting row content of the table is transformed (back) into a col-

umn table-content. After this modification of our table we have to perform two checks.

In the first place we check if the new table content is of the former table type. Note that although the

dropping of column elements won’t spoil quantified yokes it may spoil holistic ones (Sec. 11.2.2). If this

check is negative we simply generate an error message and the table remains unchanged.

In the second checking step, we check if removing some elements from parent-marked columns of our ta-

ble did not cause them to have orphans. To do that we use function col-has-orphan and we check column-

by-column the new table. Once we find a column which is a parent and has orphans, we either abort our in-

struction and report an error message —that in this case will be ‘orphan exists’ — or we initiate a cascade

action of removing orphans, and their orphans, and their orphans… .

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 239

E.g. (cf. Fig. 11.2-1), if the Distribution row is removed from Affiliations, then the column Department_ID in

Employees becomes an orphan. If this happens, the further action depends on the check-setting chs.

• If it is set to ‘restrict’, then the operation is abandoned and an error is signalized.

• If it is set to ‘cascade’, then we remove from Employees all rows that include Distribution.

We shall not formalize the “cascade” part of our definition, since it is a technical task which would not con-

tribute much to our model.

Remove all rows of the first table from the second table

nid-exclude-ro-from-ta : Identifier x Identifier x CheSetting ⟼ NewInsDen i.e.
nid-exclude-ro-from-ta : Identifier x Identifier x CheSetting ⟼ WfNewSta → WfNewSta

The definition of this constructor is analogous to the former, we just have to use another auxiliary function on

tuples.

11.3.4.2 Column-oriented table instructions

The four constructors to be defined in this section are associated with columns only implicitly since none of

them neither takes columns as arguments nor return them as a results. All of them are defined in five steps

analogous to these of row-oriented constructors:

1. the transformation of a column table-content into a row table-content,

2. a modification of every labeled row by an appropriate constructor of labeled rows,

3. the transformation of the resulting row-table-content into a new table (in the cases of constructors add,
cut, change) or into a column (in the case of constructor get).

4. checking integrity constraints of the new table,

5. checking integrity constraints of the new database.

Add a column to a table

nid-add-column : Identifier x Identifier x ColTypExpDen ⟼ NewInsDen
nid-add-column : Identifier x Identifier x ColTypExpDen ⟼ WfNewSta → WfNewSta
nid-add-column.(ta-ide, co-ide, ctd).nes = ta – table, co- col-

umn

 is-error.nes ➔ nes
 ctd.nes = ? ➔ ?
 ctd.nes : Error ➔ ctd.nes

let
 cot = ctd.nes

(sta, (tre, (dab, dbr, mon))) = nes
dab.ta-ide = ? ➔ nes ◄ ‘no such table’
let
 (ctc, tat) = dab.ta-ide table to be modi-

fied

ctc.co-ide = ! ➔ nes ◄ ‘column already exists’
let

 n = depth.ctc
 (bat, bav, coy, com) = cot
 col = bavcn column of default values of length

n
 col-message = check-column-type.(col, cot)

col-message ≠ ‘OK’ ➔ nes ◄ col-message
let

 new-ctc = ctc[co-ide/col] new column table-

content

 (tah, roy) = tat source table

type

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 240

new-hea = tah[co-ide/cot] new table

header

new-tat = (new-hea, roy) new table

type

new-tab = (new-ctc, new-tat) new ta-

ble
new-dab = dab[ta-ide/new-tab] new data-

base

here we start the consistency check of the new database

com = {} ➔ (sta, (tre, (new-dab, dbr, mon)))
 ‘primary’ : com ➔ nes ◄ ‘repetitions in a parent column’ (since all elem. are the

same)
let

 {ide-1,…,ide-k} = com
 result-i = subordination.(new-dab, ta-ide, ide-i, co-ide) for i = 1;k

result-i : Error ➔ nes ◄ result-i for i = 1;k
true ➔ (sta, (tre, (new-dab, dbr, mon))

This constructor first builds a new column of (identical) default values indicated by the type of this column,

and then it checks if the new column satisfies the assumed column type. If that is the case, the table type is

augmented by the new column type but its row yoke remains unchanged. If we want to cover new column by

the row yoke, we have to modify the latter by a dedicated instruction.

In the end we perform the consistency check:

• if the new column is neither a marked parent not a marked child, then we are done,

• otherwise, if the column is marked as a parent, then we signalize an error, since our column includes

repetitions; all its elements are equal to the default value,

• otherwise we identify all tables indicated as parents of our column (and table), and we check if they

are actually parents.

Cut a column from a table

The simple removal of a column from a table is an easy task, and therefore the bulk of the work is in check-

ing if the resulting database satisfies all integrity constraints. There are essentially two cases when the re-

moval of a column may destroy the integrity of a base:

1. A removal of a column from a table means a removal of an element from each row, and this may cause

the row yoke of the table to be not satisfied anymore.

2. If the column to be removed is marked as a parent, then its removal may cause orphanhood of some

tables in the base. In this case the actions to be taken depends on the setting the checking parameter:

a. if it is set to ‘restrict’, then an error message is generated and further action is aborted,

b. if it is set to ‘cascade’, then the instruction removes all these children columns from children

tables that violate database consistency; during this action it permanently check if the row

yokes of the modified tables are satisfied, and if they are not, it aborts the cascade and returns

to the initial state.

nid-cut-column : Identifier x Identifier x CheSetting ⟼ NewInsDen
nid-cut-column : Identifier x Identifier x CheSetting ⟼ WfNewSta → WfNewSta
nid-cut-column.(ta-ide, co-ide, chs).nes = ta – table, co- col-

umn

 is-error.nes ➔ nes
let
 (sta, (tre, (dab, dbr, mon))) = nes
dab.ta-ide = ? ➔ nes ◄ ‘no such table’
let
 (ctc, tat) = dab.ta-ide

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 241

ctc.co-ide = ? ➔ nes ◄ ‘no such column’
let

(tah, roy) = tat source table

type

 (bat, bav, coy, com) = tah.co-ide
new-ctc = ctc[co-ide/?] new column table-

content

(row-1,…,row-n) = C2R.new-ctc
 roy.row-i : Error ➔ nes ◄ row-message-i for i = 1;n

 roy.row-i = fv ➔ nes ◄ ‘row yoke not satisfied’ for i = 1;n
 let

new-hea = tah[co-ide/?] new table header

new-tat = (new-hea, roy) new table type

new-tab = (new-ctc, new-tat) new table

‘primary’ /: com ➔ (sta, (tre, (dab[ta-ide/new-tab], dbr, mon)))
chs = ‘restrict’ ➔ nes ◄ ‘a parent column can’t be removed’

 chs = ‘cascade’ ➔ … conditional removal of all children that cause inconsistences

Filter the indicated columns of a table (remove the not-indicated)

va-filter-col-from-ta : ListOfIde x Identifier ⟼ NewInsDen
va-filter-col-from-ta : ListOfIde x Identifier ⟼ WfNewSta → WfNewSta

In this definition, we refer to the domain of lists of identifiers ListOfIde (Sec. 6.1). We skip its formal defini-

tion.

Modify a column in a table conditionally

The constructed denotation modifies all these elements of an indicated column that belong to rows satisfying

a given row yoke. The new values in the indicated column are calculated by means of a modifying row yoke.

An example of such an instruction may be the following:

UPDATE Employees
SET Salary = Salary * 1,1
WHERE Position = ‘salesman’

The denotation of such instruction builds a new table in five steps:

1. it transforms the source column table-content into a row table-content,

2. it calculates the modified values of the target column,

3. it conditionally replaces in all rows the former values in the indicated columns by new values,

4. it checks if the new table content is compatible with the table’s (unchanged) type,

5. it checks the consistency of the new database.

nid-modify-col-in-ta : Identifier x Identifier x RowYokExpDen x RowYokExpDen ⟼ NewInsDen
nid-modify-col-in-ta : Identifier x Identifier x RowYokExpDen x RowYokExpDen ⟼

 WfNewSta ⟼
WfNewSta

nid-modify-col-in-ta .(ta-ide, co-ide, mo-ryd, se-ryd) = mo- modifying, se- select-

ing

 is-error.nes ➔ nes
 let

(sta, (tre, (dba, dbr, mon))) = nes
dab.ta-ide = ? ➔ nes ◄ ‘no such table’
let
 (ctc, tat) = dab.ta-ide
 (tah, roy) = tat
 com = marking.(tah.co-ide)

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 242

ctc.co-ide = ? ➔ nes ◄ ‘no such column’
 let

(lar-1,…,lar-k) = C2R.ctc
 mo-bav-i = mo-roy.lar-i for i = 1;k modified val-

ues

 se-bav-i = se-roy.lar-i selection val-

ues

 mo-bav-i : Error ➔ nes ◄ mo-bav-i for i = 1;k
 se-bav-i : Error ➔ nes ◄ se-bav-i for i = 1;k
 type.se-bav-i ≠ ‘boolean’ ➔ ‘boolean value expected’
 let

new-lar-i =
 se-bav-i = tv ➔ lar-i[co-ide/mo-bav-i] for i = 1;k
 true ➔ lar-i
new-rtc = (new-lar-1,…,new-lar-k)
new-ctc = R2C.new-rtc

 tab-message = type-table-check.(new-ctc, tat)
tab-message : Error ➔ nes ◄ tab-message
let

 new-tab = (new-ctc, tat)
 new-col = new-ctc.co-ide
 here we start the consistency check of the database

com = {} ➔ (sta, (tre, (dab[ta-ide/new-tab], dbr, mon)))
‘primary’ : com ➔ the modified column is marked to be a par-

ent

are-repetitions.new-col ➔ ‘repetitions in a parent column’
let

orp-message = col-has-orphan.(dab, ta-ide, co-ide)
orp-message : Error ➔ nes ◄ orp-message
orp-message = tv ➔ nes ◄ ‘orphan detected’
com = {‘primary’} ➔ (sta, (tre, (dab[ta-ide/new-tab], dbr, mon))) no parents de-

clared

 let
 {pa-ide-1,…,pa-ide-k, ‘primary’} = com some parents de-

clared

 result-i = subordination.(dab, ta-ide, pa-ide-i, co-ide) for i = 1;k
 result-i : Error ➔ nes ◄ result-i for i = 1;k
 true ➔ (sta, (tre, (dab[ta-ide/new-tab], dbr, mon)))
‘primary’ /: com ➔
 let
 {pa-ide-1,…,pa-ide-k} = com

 result-i = subordination.(dab, ta-ide, pa-ide-i, co-ide) for i = 1;k
 result-i : Error ➔ nes ◄ result-i for i = 1;k
 true ➔ (sta, (tre, (dab[ta-ide/new-tab], dbr, mon)))

The consistency of a database may be destroyed by our instruction if the marking of the modified column is

not empty and:

1. the modified column is marked as a parent and,

a. it is not repetition free, or

b. has orphans in the base,

2. the modified column is marked as a child but its table does not satisfy the expected subordination rela-

tions.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 243

Note that our instruction may be also used to replace a current value in a table field by a new value. The table

field is in such a case identified by a column name together with a row yoke that identifies the row where the

field belongs.

11.3.4.3 Transactions

As was announced in Sec. 10.6 transactions in SQL are blocs of sequentially composed instructions, i.e.,

composed instructions, enriched with special instructions protecting databases from the destruction of their

integrity. In such cases a programmer in SQL may use a security instruction that order the system to make a

copy of the current database which the system may bring back if an operation can’t be completed without

errors.

It seems that in our model the idea of protecting a database against an integrity violation is already built in

in our instructions where such violations are signalised by error messages and the state remains unchanged.

Nevertheless, for the completeness of our model, we define the instructions of handling security copies.

Create a security copy

tra-create-security-copy: Identifier ⟼ NewInsDen
tra-create-security-copy: Identifier ⟼ WfNewSta ⟼ WfNewSta
tra-create-security-copy.ide.nes =

is-error.nes ➔ nes
 let

 (sta, (tre, (dba, dbr, mon))) = nes
dbr.ide = ! ➔ nes ◄ ‘identifier already used’

 true ➔ (sta, (tre, (dba, dbr[ide/dba], mon)))

Remove a security copy

tra-remove-security-copy : Identifier ⟼ WfNewSta ⟼ WfNewSta
tra-remove-security-copy.ide.nes=
 is-error.nes ➔ nes
 let
 (sta, (tre, (dba, dbr, mon))) = nes

dbr.ide = ? ➔ nes ◄ ‘no such security copy’
 true ➔ (sta, (tre, (dba, dbr[ide/?], mon)))

Our last instruction replaces the current database by an indicated security copy and removes the security copy

from the repository.

Recover the security copy

tra-recover-security-copy : Identifier ⟼ WfNewSta ⟼ WfNewSta
tra-recover-security-copy.ide.nes =
 is-error.nes ➔ nes
 let
 (sta, (tre, (dba, dbr, mon))) = nes
 dbr.ide = ? ➔ ‘no such security copy’
 let
 sec-dba = dbr.ide

true ➔ (sta, (tre, (sec-dba, dbr[ide/?], mon)))

11.3.4.4 Queries

A query is an instructions that first creates a new table from another table or tables, and then assigns it to a

system identifier monitor in the current database. We skip obvious definitions of their constructors.

11.3.4.5 Instructions modifying integrity constraints

There are basically three categories of integrity-constraint modifications:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 244

1. the modifications of an indicated column yoke of an indicated table,

2. the modification of the row yoke of an indicated table,

3. the modification of the current subordination marks.

The corresponding constructors may be easily defined in our model.

11.3.4.6 Cursors

Cursors (Sec. 10.9) are mechanisms used to get rows from tables. In our model, that can be easily defined,

e.g., by adding a column to a table that enumerates its rows.

11.3.4.7 Views

Views are virtually procedures that call table instructions. They may be introduced in our model in a similar

way as in Lingua.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 245

12 AN EXERCISE WITH A DENOTATIONAL CONCURRENCY

12.1 An overview of our model of concurrency

So far, our programs may be seen as flowchart-like structure where nodes are state-to-state functions. Since

we have resigned from goto’s, our flowcharts are built by three constructors: sequential composition, branch-

ing, and looping. Note that when passing from Lingua to Lingua-SQL, we only enriched the variety of

nodes of our flowcharts, but we preserved flowchart control structures and state-to-state denotations.

To incorporate a concurrency mechanisms into our model we shall go beyond both these paradigms:

• flowcharts will be replaced by Petri nets,

• state-to-state functions, i.e., sets of pairs of states, by sets of finite or infinite sequences of states called

bundles of computations.

In both these cases we have to do with natural generalizations: Petri nets are generalizations of flowcharts,

and sequence — of ordered pairs.

Independently of these modifications we shall also introduce a new algebra of symbolic behaviors be-

tween the algebra of abstract syntax and that of denotations (Fig. 12.1-1). Before we proceed to building our

new model we shall roughly explain the role of the new algebra on the exaple of sequential programs.

Fig. 12.1-1 An extended algebraic model of a programming language

The elements of the new algebra are called symbolic behaviors, and are sets of symbolic executions. The lat-

ter, in turn, are finite sequences of atoms, and atoms are the following program components:

• single declarations of all categories,

• single instructions that include:

o assignments,

o procedure calls,

o value expressions

In which way value expressions are regarded as instructions, will be seen in a moment.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 246

Now, with every program we assign its symbolic behavior, i.e., the set of its potential symbolic execu-

tions. From the view point of formal-language theory, behaviors may be regarded as regular languages over

an alphabet of atoms. The step from symbolic behaviors to denotations consists in replacing:

• atoms by their denotations,

• sequences of atoms by sequential compositions of these denotations,

• sets of sequences of atoms by set-theoretic unions of the denotations of sequences; here a nondeter-

minism may come into play.

To describe our new model in a more formal way — still without going into technical details — let us show

how it works in the case of instructions. In that case the corresponding domain of symbolic behaviors is de-

fined as follows:

sbi : SymBehIns = Set.SymExeIns symbolic behaviors of instructions

sei : SymExeIns = InsAtoc* symbolic executions of instructions

ati : AtoIns = AsgIns | ProCal | ValExp atoms of instructions

ain : AsgIns = assign(AbsRefExp , AbsValExp) assignment instructions

…

Having these domains, we define a symbolic semantics of instructions as a function that assigns symbolic

behaviors to (abstract-syntax) instructions:

SSI : AbsIns ⟼ SymBehIns

SSI[ati] = {(ati)}
SSI[sin1 ; sin2] = SSI[sin1] © SSI[sin2]
SSI[if exp then ins1 else ins2 fi] = ({(exp)} © SSI[ins1]) | ({(not exp)} © SSI[ins2])
SSI[while exp do ins od] = ({(exp)} © SSI[ins1])c* © {(not exp)}

where © is concatenation of languages (Sec. 2.5).

Once we are done with the mechanism of symbolic behaviors, we can pass to the level of denotations. We

define a function from symbolic behaviors to state-to-state denotations:

S2D : SymBehIns ⟼ InsDen

First, with every (atomic) behavior that includes only one execution with only one atom we assign the (earli-

er defined) state-to-state denotations of this atom. E.g., (cf. Sec. 7.1)

S2D[{(assign(AbsRefExp , AbsValExp))}] = A2D[assign(AbsRefExp , AbsValExp)]

Next, with every (abstract) value expression ave we assign the following state-to-state function that we shall

call a filter:

S2D[{(ave)}] : State → State
S2D[{(ave)}].sta =
 A2D[ave].sta = ? ➔ ?
 let
 val = A2D[ave].sta
 val : Error ➔ sta ◄ val
 val /: Bool ➔ sta ◄ ‘boolean expected’
 val = tv ➔ sta
 val = fv ➔ ?

The denotation of {(ave)} is a subset of the identity function on states. It is transparent for states evaluating

ave to tv and otherwise generates an error or is undefined accordingly. The role of subsets of identity in the

semantics of programs is explained in Sec. 8.3.

Finally, with every symbolic execution of an instruction we assign the (functional) composition of all the

denotations of its elements, and with every symbolic behavior — the (set theoretic) union of the denotations

of its executions:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 247

S2D.{(ati-1,…,ati-n) | (ati-i,…,ati-n) : sbi} = for all sbi : SymBe-
hIns

U {(S2D[ati-1] ● … ● S2D[ati-n] | (ati-i,…,ati-n) : sbi}

On the ground of our extended model of sequential languages the step from sequentiality to concurrency con-

sists in:

• we replace symbolic behaviors, i.e., regular languages over an alphabet of atoms generated by

flowcharts by trace languages of Antony Mazurkiewicz (see [73]) generated by simple Petri nets,

• we replace state-to-state denotations by bundles of computations of Andrzej Blikle (see [21], [22] and

[24]).

Similarly as in the case of SQL, we shall limit our investigations to the denotational algebra of the new mod-

el, and we shall only sketch the construction rather than go into “practical technicalities”.

12.2 Bundles of computations

12.2.1 Abstract nets and quasinets

In Sec. 2.5 and Sec. 2.7 we have described a CPO of formal languages and of binary relations respectively.

Both provide an adequate context for equational (fixed-point) descriptions of the syntaxes and the denota-

tions of programming languages. Both are equipped with a continuous monoid operation: the concatenation

of languages and the sequential composition of relations respectively. In our approach to concurrency we

shall use yet another CPO with a monoid operation: a CPO of bundles of computations. All three are particu-

lar cases of abstract nets and quasinets investigated by A.Blikle in the decade of 1970. in several papers (cf.

[19], [21], [22], [23] and [24]). In this section we give a short introduction to their theory.

A quasinet is a partially ordered sets with a monoidal operation. By a monoid over a set A we mean a tri-

ple

(A, ●, e)

where ● is a total function, called composition

● : A x A ⟼ A

with two following properties

1. (a ● b) ● c = a ● (b ● c) — associativity

2. a ● e = e ● a = a — e is the unit of composition

By a quasinet we mean a quintuple (A, ⊑, ●, Φ, e) with the following properties107:

(1) (A, ⊑, Φ) is a CPO

(2) (A, ●, e) is a monoid

(3) ● is continuous

(4) Φ ● a = Φ for any a : A

A quasinet is said to be a net if

(5) a ● Φ = Φ for any a : A.

A quasinet is said to be set-theoretic if A is a set of sets and ⊑ is an inclusion of sets. If there exist elements a

and b both different from Φ such that

a ● b = Φ

107 Nets were originally introduced by A.Blikle in [19] as complete lattices with a monoidal operation. Here we are
weakening our definition assuming that a net must be a CPO, since in fact all what we need is that continuous fixed-
point equations have least solutions. Besides, set-theoretic CPO’s of functions are not lattices since a union of two
functions needs not to be a function.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 248

then they are called the divisors of zero.

Originally quasinets were defined as complete lattices, rather than CPO’s. A complete lattice is a POS (A,
⊑) where for every subset of A there exists the least upper bound and the greatest lower bound. Here we in-

troduce nets and quasinets understood as POS’s in order to cover POS’s of partial functions which do not

constitute lattices.

12.2.2 Nets of the bundles of computations

In the majority of denotational models of programming languages, the denotations of programs are state-to-

state functions, or — in non-deterministic cases — binary relations on states. This approach is adequate to

situations where programs are supposed to terminate after a finite number of staps. If, however, we intend to

deal with programs that “run forever” and we still regard them correct — as it is frequently the case with

concurrent programs — binary relations become inadequate. In the first place on their ground we can’t de-

scribe a situation where a nondeterministic program starting with a given input state may generate a terminat-

ing execution or alternatively an infinite execution. Besides, on the ground of relational semantics we can

hardly talk about temporal properties of executions.

To tackle the mentioned problems we shall use a model where the denotations of programs are sets of se-

quences of states generated by programs. Such models were investigated by A. Blikle in [21], [22] and [24].

Let State be an arbitrary set of items called states. By a computation over State we mean any empty, fi-

nite, or infinite sequence of states. Let

com : Co.State = FiCo.State | InCo.State the set of all computations over

State

com : FiCo.State = Statec* the set of all finite computations over

State
com : InCo.State = Statec∞ the set of all infinite computations over

State

including the empty computation ()

Consider two computations (sta-11,…,sta-1n) and (sta-21,…,sta-2m) with n,m ≤ ∞, each of which may

be empty (n=0 or m=0), finite (1≤n≤k or 1≤m≤k) or infinite (n=∞ or m=∞). By a sequential composition

or just a composition of these computations we mean a computation defined in the following way:

(sta-11,…,sta-1n) ● (sta-21,…,sta-2m) =
 n = ∞ ➔ (sta-11,…,sta-1n)
 n = 0 ➔ ()
 m = 0 ➔ ()
 sta-1n ≠ sta-21 ➔ ()
 true ➔ (sta-11,…,sta-1n, sta-22,…,sta-2m)

Intuitively a sequential composition of two computations is a computation that starts with the first one, and

continuous with the second. In turn, an empty computation () is a computation that “cannot happen”. With

this interpretation an intuitive explanation of our definition is the following:

• an infinite computation followed by any other computation (even empty), is the former computation,

because nothing may be added “at the end” of an infinite computation,

• a composition of a computation that can’t happen with any computation is a computation that can’t

happen,

• a sequential composition of a finite computation with a computation that can’t happen, cannot hap-

pen,

• a sequential composition of a finite computation whose last state is different from the first state of the

second computation, i.e., where sta-1n ≠ sta-21, can’t happen because the second is supposed to be

a continuation of the former,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 249

• finally, if sta-1n = sta-21, then the second computation continues the first computation.

As is easy to check, our composition is associative, and the following equations are satisfied:

() ● com = () for any com : Co.State
com ● () = () for any com : FiCo.State
com ● () = com for any com : InCo.State

By a bundle of computations we mean any set of computations which includes the empty computation. We

shall denote:

Bun.State = { P | P ⊆ Co.State and () : P}108
-A = State – A — for any set of states A ⊆ State

[A] = {(sta) | sta : A} | {()} — for any set of states A ⊆ State; [A] is called a test

{P} — the set of all states that appear in bundle P, e.g. {[A]} = A
Ib = [State] — identity bundle

Eb = {()} — empty bundle

fin.P = P ∩ Statec* — finitistic part of P
inf.P = (P – fin.P) | {()} — infinitistic part of P

In our new model bundles will represent denotations of programs. A bundle is said to be infinitistic if it in-

cludes infinite computations. The composition of bundles is defined as follows:

P ● Q = {com-1 ● com-2 | com-1 : P and com-2 : Q}

As is easy to check:

(Bun.State, ⊆, ●, Eb, Ib)

is a set-theoretic quasinet109, but not a net since

P ● Eb = inf.P

Similarly as in the case of languages, quasinets of bundles constitute complete lattices.

In obvious contexts we shall allow to omit ● and write com-1com-2 and PQ respectively. We assume al-

so that composition binds stronger than union, i.e.

PQ | RF = (PQ) | (RF)

Empty bundle Eb represents a program that “can’t run”. A union of bundles P|Q represents a (possibly) non-

deterministic branching of programs P and Q, and a composition PQ represents a sequential composition of

these programs. A computation consisting of two states only (sta-1, sta-2) is called an atomic computation.

A bundle whose all non-empty computations are atomic is called an atomic bundle.

The powers of a bundles — Pn, P+ and P* — are defined according to the rule indicated for abstract

quasinets (Sec. 12.2.1). As is easy to see:

P+ = U{ Pn | n = 1,2,…}.

It should be observed that in the quasinet of bundles we have so called zero divisors, i.e., such P and Q both

different from Eb, that

PQ = Eb.

E.g., if A ∩ B = {}, then [A][B] = Eb. As is easy to check (see [21] and [24]) the following equations are true

for any bundles P, Q and R:

[A]P = {com | com : P and first.com : A} | {()}

108 Bundles will be denoted by P, Q, R,… and sets of states by A, B, C,…
109 Note that if we had not assumed that all bundles include empty computation, then the composition of an infinitistic

bundle with the empty bundle would be the empty bundle, which would mean that if we compose sequentially a pro-
gram which may loop indefinitely with a program that can’t run, then the composed program can’t run.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 250

P(Q|R) = PQ | PR — left distributivity over union

(Q|R)P = QP | RP — right distributivity over union

In the quasinet of bundles we can define constructors that correspond to structured constructors of programs:

P ; Q = PQ

if (T, F) then P else Q fi = TP | FQ

In the second equation we assume that T, F ⊆ [State] are disjoint subsets of identity bundle that represent a

three-valued predicate. Note that if we consider a bundle of the form

R ; if (T, F) then P else Q fi = R (TP | FQ)

then a computation of R which terminates with a state in T composed with a computation of FQ results an

empty computations, because it “cannot happen”.

 To deal with infinite computations we introduce a composition of an infinite sequence of bundles, infor-

mally:

P1 ● P2 ● …

To define this operation we need a few auxiliary concepts. We say that com-1 is a prefix of com-2, in sym-

bols

com-1 ⊑ com-2

if there exists com, such that com-2 = com-1 ● com. Note that

() ⊑ ()

but

 () ⊑ com does not hold for com ≠ (). (12.2.2-1)

A composition of an infinite sequence of computations denoted by

C.(com-1, com-2, …)

is the shortest110 com such that (∀ n) (com-1 ● … ● com-n ⊑ com). Note that if for some n ≥ 1,

com-1 ● … ● com-n = (),

then

C.(com-1, com-2, …) = ().

As we see, a composition of an infinite sequence of computations may be empty, finite or infinite. Now, we

can define a composition of an infinite sequence of bundles:

C.(P1, P2, …) = { C.(com-1, com-2, …) | (∀ i) com-i : Pi }

and an infinite power of a bundle

P
∞
 = C.(P, P, …)

Using the introduced notation we can define the denotation of a while-loop:

while (T, F) do P od = (TP)*F | (TP)
∞

In this case (TP)*F is the least solution of the equation

X = TPX | F

which can be easily proved using Kleene’s theorem 12.2.1-1. At the same time, if all nonempty computations

in (TP)
∞
 are infinite, then (TP)∞ is the greatest solution of the equation

110 Note that if starting with some n all comi are tests then C.(com1, com2, …) is finite and is either empty or equal to
com1 ●…● comn-1.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 251

X = TPX

Proof in [24].

12.2.3 Strong total correctness of bundles

Bundles constitute an adequate framework for the development of a Hoare-like correctness theory for strong

total correctness with clean termination, i.e. without abortion (cf. Sec. 8.7). In Lingua, abortion states carry

an error message in their error registers and in this way indicate that a program has stopped its execution and

displays an error message. In the current abstract model of states we shall only assume the existence of a dis-

tinguished subset of the set of states whose elements are called abortion states.

Abort ⊆ State

We will say that a program terminates its execution cleanly if its terminal state is not an abortion state.

Now, let A be an arbitrary subset of State, and let P be an arbitrary bundle over State. We define two op-

erations of left- and respectively right composition of a bundle with a set of states.

A ● P = { sta-n | (∃ (sta-1,…,sta-n) : P) sta-1 : A }
P ● B = { sta-1 | (∃ (sta-1,…,sta-n) : P) sta-n : B }

Here we use the same symbol as for the composition of bundles and we allow omitting this symbol thus writ-

ing AP and PB. As is easy to prove both these operations are monotone and associative.

Lemma (12.2.3-1) For any A, B ⊆ State and any P, Q : Bun.State

if A ⊆ B then AP ⊆ BP and PA ⊆ PB
if P ⊆ Q then AP ⊆ AQ and PA ⊆ QA
A(PQ) = (AP)Q and (PQ)A = P(QA) ■

Using our operations we can define the properties of partial correctness and of weak total correctness of bun-

dles:

AP ⊆ B — partial correctness of P for precondition A and postconditions B; every finite computation

 of P that starts in A, terminates in B, but there may be infinite computations that start in A.

This property corresponds to a partial correctness in the sense of C.A.R. Hoare (cf. [5] and [61]).

A ⊆ PB — weak total correctness of P for precondition A and postconditions B, for every a : A there

 exists a computation in P that starts with a, and terminates in B.

This property is called weak total correctness, since it only guarantees that for any s in A there exists a finite

computation that starts with s and terminates in B, but there may be other computations that start with s, but

either terminate outside B or do not terminate at all111. Of course, in the case of deterministic programs weak

total correctness is just total correctness, and if we assume that B does not include states that carry an error

message, then it is a clean total correctness. In the deterministic case clean total correctness implies partial

correctness.

In the case of nondeterministic programs with possibly infinite computations we need a stronger concept

of correctness which would guarantee that all computations that start in A terminate in B. To define this con-

cept we introduce a strong composition of a bundle with a set of states:

P ■ B = {sta | (∀com : P) if first.com = sta than com : Statec* and last.com : B}

where first.com and last.com are the first and the last element of com.

P ■ B is the set of all states which give rise to finite computations only, and all these computations termi-

nate in B. Consequently, if sta : P ■ B then all computations that start with sta are finite and terminate in B.

Similarly to the properties (12.2.3-1) also now we have monotonicity and associativity:

111 The idea to call this total correctness a weak total correctness is due to Krzysztof Apt (personal communication).

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 252

Lemma (12.2.3-2) For any A, B ⊆ State and any P, Q : Bun.State

if A ⊆ B then P ■ A ⊆ P ■ B
if P ⊆ Q then P ■ A ⊆ Q ■ A
(PQ) ■ A = P ■ (Q ■ A) ■

Now, the strong correctness is defined as follows:

A ⊆ P ■ B — strong correctness of P for precondition A and postcondition B; all computations of P
 that start in A terminate in B.

If B includes no error states then we say that P is strongly correct with clean termination. Of course, in a

deterministic case weak total correctness is equivalent to strong correctness, but in a nondeterministic case

the former is weaker than the latter. The following obvious lemma is useful in developing proof rules for

structured constructors:

Lemma 12.2.3-3 For any A, B ⊆ State and P : Bun.State

A ⊆ P ■ B iff AP ⊆ B and A ⊆ P ■ State ■

Having defined strong total correctness of bundles we can formulate Hoare-like proof rules similar as in the

case of binary relations (cf. Sec. 8.7).

Lemma 12.2.3-4 For any A,D ⊆ State and P,Q : Bun.State

there exist B, C ⊆ State such that
(1) A ⊆ P ■ B

(2) B ⊆ C

(3) C ⊆ Q ■ D

(4) A ⊆ (PQ) ■ D

Proof If (1) – (3) are satisfied then partial correctness A(PQ) ⊆ D is immediate from Lemmas 12.2.3-1 and
12.2.3-3. The termination is obvious. In turn, if (4) is satisfied then by Lemma 12.2.3-2, A ⊆ P ■ (Q ■ D)
and setting B = C = Q ■ D we get the proof.

 ■

Lemma 12.2.3-5 For any predicate (T, F) any A,B ⊆ State and P,Q : Bun.State

(1) A ∩ {T} ⊆ P ■ B

(2) A ∩ {F} ⊆ Q ■ B

(3) A ⊆ {T} | {F}

(4) A ⊆ if (T, F) then P else Q fi ■ B

Since

if (T, F) then P else Q fi = TP | FQ,

the proof is analogous to the former. Of course, in the case of classical predicates T | F = State, and there-

fore condition (3) is a tautology and may be omitted.

We skip the discussion of a while-loop to avoid technicalities that would go beyond the scope of this sec-

tion. Such rules for the case of I-O functions have been discussed in [28] and in Sec. 8.7.2.

Two important issues have to pointed out at the end. First concerns the fact that we are not building here

any formalized logic of programs like in [61]or [4]. Our proof rules are just lemmas proved on the ground of

set theory to be used in proving properties of programs on the same ground. Logic involved in these proofs is

just a usual mathematical logic.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 253

The second issue concerns the fact that our proof rules may be regarded as construction rules of correct

programs analogously as in Sec. 9.4.

12.2.4 Temporal quantifiers

Temporal quantifiers may be easily defined in the model of bundles. For that sake let us regard computations

as functions that map nonnegative integers into states. We assume further that each such function is defined

on an initial interval of the form [1,…,n]. By dom.com, where com is a computation, we shall denote the

domain of com. Let A,B ⊆ State represent the truth parts of a predicate, let com be an arbitrary computa-

tion, and let i and j run over dom.com. Then:

A □ com iff (∀ i) com.i : A — always A

A ◊ com iff (∃ i) com.i : A — eventually A

(A U B) com iff (∃ j) ((∀ i ≤ j) com.i : A) and com.j : B — A until B

(A W B) com iff (A U B) com or (not (B ◊ com) and (A □ com)) — A unless B

(A → B) com iff if (∃ i) com.i : A then (∃ j ≥ i) com.j : B — if A then later B
(A  B) com iff if (∃ i) com.i : B then (∃ j ≤ i) com.j : A — B only if earlier A

The quantifier W is called by Mordechai Ben-Ari in [13] a weak until because it does not require that B even-

tually becomes true. In such a case A remains true forever. Our quantifiers may be easily generalized to bun-

dles:

A □ P iff (∀ com : P) A □ com

and analogously for other quantifiers. We say that A is hereditary in a bundle P, in symbols

A ► P

if

(∀ com : P) either -A □ com or (∃ i) (∀ j ≥i) (com.j : A)

12.3 Petri nets and trace languages

12.3.1 Trace languages of Antoni Mazurkiewicz

Let Alp be a finite or infinite alphabet. By a dependency relation or simply a dependency in Alp we mean any

finite binary relation D ⊆ Alp x Alp such that, if (a, b) : D then (b, a) and (a, a) : D. With every dependen-

cy we associate its alphabet alp.D which is the set of all letters that appear in D. Consequently, a dependency
D is reflexive and symmetric in alp.D. A dependency D is said to be a full dependency if

D = (alp.D)c2

By Dep.Alp we shall denote the set of all dependencies over Alp. Dependencies have the following im-

portant properties:

1. empty relations, identity relations and full relations in their alphabets are dependencies,

2. union and intersection of a finite number of dependencies is a dependency,

3. every dependency is a finite union of full dependencies.

For instance,

D = {a, b}c2 | {a, c}c2

is a dependency relation over alp.D = {a, b, c}. By an independency relation induced by D we mean a rela-

tion

ind.D = (alp.D)c2 – D.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 254

Clearly every independency is symmetric and irreflexive in its alphabet alp.(ind.D). In the case of our exam-

ple ind.D = {(b, c), (c, b)}, and alp.(ind.D) = {b, c}. Independency relations may be described as a symmet-

ric closures, abbreviated sc, of a non-symmetric relations. E.g.,

ind.D = sc.{(b, c)}.

The alphabet alp.(ind.D) may be a proper subset of alp.D, but may also be equal to alp.D. E.g. if D is an

identity relation, and alp.D includes at least two elements, then alp.D = alp.(ind.D).

Given a dependency D we define an equivalence relation ≡D between words over alp.D as the least con-

gruence in the monoid of these words such that for any a, b : alp.D:

if (a, b) : ind.D then ab ≡D ba (12.3.1-1)

This relation is called trace equivalence for D. Equivalence classes over ≡D in (alp.D)* are called traces over
D, and constitute a quotient monoid (alp.D)*/≡D. An element of that monoid represented by a word w will be

denoted by [w]D or simply by [w] if D is understood. In that case w is said to be a representant of [w]. In the

general case a trace may have many representants, but

Fact 12.3.1-1 If a dependency D is full, then each D-trace has exactly one representant.

By

Tra.D = {[w] | w : (alp.D)c*}

we denote the set of all traces over D. If by ● we denote both the concatenation of words and the concatena-

tion of traces then the latter is defined as follows:

[w1]D ● [w2]D = [w1 ● w2]D

where w1, w2 are words over alp.D. By the definition of traces, [w] is the set of all words that arise from w

by the permutations of all adjacent independent letters. For instance, in the case of our example

[abbca] = {abbca, abcba, acbba}.

For any dependency D, by a trace language over D we mean any set of traces over D. From now on, “usual”

languages described in Sec. 2.5 will be called word languages or just languages. For any word language L

over alp.D we define the corresponding trace language

[L]D = {[w]D | w : L}

In this case L is called a representant of [L]D. Of course, if D is not a full relation then [L]D has more than one

representant.

If D is understood, then we simply write [L]. By TraLan.Alp we shall denote the set of all trace languages

over Alp, i.e.,

TraLan.Alp = {[L]D | L : Lan.Alp, D : Dep.Alp}

Now, with every trace language TL we can assign a word language which includes all words belonging to the

traces of TL. A function which transforms trace languages into word languages is the following

T2L : TraLan.Alp ⟼ Lan.Alp

T2L.TL = U {t | t : TL}

Since traces are classes of abstraction, hence sets, their unions makes sense. Note that

L ⊆ T2L.[L]D (12.3.1-2)

but T2L.[L]D may be significantly larger than L because it includes all words created by the permutations of

adjacent independent letters in the words of L. Language T2L.[L]D is called the D-completion of L.

Fact 12.3.1-2 For every L and D, T2L.[L]D is the largest representant of [L]D.

Fact 12.3.1-3 For every L and D, T2L.[T2L.[L]D]D = T2L.[L]D

If

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 255

L = T2L.[L]D

then L is said to be D-complete. Consider the following example :

L = {abbca, abc}

D = {a, b}c2 | {a, c}c2 hence Ind = {(b, c), (c, b)}

In this case

[L] = { [abbca], [abc] }

[abbca] = {abbca, abcba, acbba}

[abc] = {abc, acb}

T2L.[L] = {abbca, abcba, acbba, abc, acb}

Fact 12.3.1-4 If D is full than any word language over alp.D is D-complete

The last fact implies that trace languages are natural generalizations of word languages. If D is full then [L]D
is said to be D-sequential. Of course, each D-sequential language is D-complete but not vice versa.

For every dependency relation D, the set of all trace languages over D, i.e.,

TraLan.D = {[L]D | L : Lan.(alp.D)}

 constitutes a monoid with the operation

[L1] ● [L2] = {[w1] ● [w2] | w1 : L1, w2 : L2}

and unit [()] = {()}. We shall allow writing [L1][L2] for [L1]●[L2] and analogously for traces. We also set:

[L]0 = [()]
[L]n+1 = Ln ● [L] for n = 0,1,…
[L]* = U {[L]n | n = 0,1,…}

Theorem 12.3.1-1 (see [72]) For any dependency relation D, any word languages L1 and L2 over alp.D, and

any family of word languages {Li | i = 1,2,…} over alp.D the following properties hold:

(1) [{}] = {}
(2) [L1][L2] = [L1L2]
(3) [L1] | [L2] = [L1|L2]
(4) U {[Li] | i= 1,2,…} = [U {Li | i = 1,2,…}]
(5) [L]* = [L*]
(6) if L1 ⊆ L2 then [L1] ⊆ [L2] ■

Note that in (6) a converse implication does not need to be true. E.g.

[{abbca, abcba}] ⊆ [{abbca}]

It holds, however, if L1 and L2 are the largest representants of respective trace languages. Indeed, let w : L1.
In that case [w] : [L2]. Let [w] = {w1,…,wn}. Since L2 is the largest representant of [L2], all wi’s must belong

to L2, and, therefore, w : L2.

Theorem 12.3.1-2 For any dependency relation D the set TraLan.D of all trace languages over this relation

is a set-theoretic net with concatenation of trace languages as the monoid operation, with the unit of the mo-

noid [()] and the least element {}. ■

Proof First note the following facts:

• the fact that (TraLan.D, ●, [()]) is a monoid is obvious from (2) of Theorem 12.3.1-1,

• the fact that (TraLan.D, ⊆) is a CPO, follows from (4),

• the equalities [L][()] = [()][L] follow from (1) and (2).

To prove that ● is continuous — i.e. that it is continuous in each of its arguments separately — consider a

chain of trace languages:

[L1] ⊆ [L2] ⊆ …

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 256

where all Li’s are the largest representants of the respective trace languages. Let Q be the largest representant

of [Q]. To prove that ● is continuous in second argument we have to prove that

[Q] ● U {[Li] | i = 1,2,…} = U {[Q] ● [Li] | i = 1,2,…}

Indeed, by (2) and (4) and the continuity of the concatenations of word languages, we have

[Q] ● U {[Li] | i = 1,2,…} = [Q] ● [U {Li | i = 1,2,…}] = [Q ● U {Li | i = 1,2,…}] =

[U { Q ● Li | i = 1,2,…}] = U { [Q ● Li] | i = 1,2,…}] = U {[Q] ● [Li] | i = 1,2,…}.

The proof for the first argument is analogous. ■

Now, we can proceed to the definitions of synchronization operations of word languages and trace lan-

guages. We start from the notion of projection. Let B ⊆ Alp, and let w be a word over Alp. By a projection of

a word w over the alphabet B we mean a word over B defined as follows:

pro.(B, Alp) : Word.Alp ⟼ Word.B
pro.(B, Alp).w =
 w = () ➔ ()
 let
 z ● a = w where a : Alp
 a /: B ➔ pro.(B, Alp).z
 a : B ➔ (pro.(B, Alp)) ● a

Projection function removes from w all letters which are not in B. This function may be extended to lan-

guages in an obvious way:

pro.(B, Alp).L = {pro.(B, Alp).w | w : L}

Let now C and D be dependencies and let C ⊆ D. By a trace projection of a trace t on dependency C we

mean a trace over C defined as follows:

tr-pro.(C, D) : Tra.D ⟼ Tra.C

tr-pro.(C, D).t =
 t = [()]D ➔ [()]C
 let
 p ● [a]D = t where a : alp.D
 a /: alp.C ➔ tr-pro.(C, D).p
 a : alp.C ➔ (tr-pro.(C, D).p) ● [a]C

This function satisfies the following equality for any w : alp.D:

tr-pro.(C, D).[w]D = [pro.(alp.C, alp.D).w]C

As we see, trace projection given a trace over D removes from its representants all letter which are not in

alp.C and restricts the dependency to C. Here two cases are possible.

If alp.C is strictly included in alp.D, then traces over C, regarded as sets, are not comparable with traces

over D.

Example 12.3.1-1

Let

D = {a, b}c2 | {a, c}c2 | {a, d}c2 and then ind.D = { (b, c), (c, b), (b, d), (d, b), (c, d), (d, c) }

C = {a, b}c2 | {a, c}c2 and then ind.C = { (b, c), (c, b) }

In this case ind.C ⊆ ind.D and, e.g.

[abcd]D = {abcd, abdc, acbd, acdb, adcb, adbc}.

tr-pro.(C, D).[abcd]D = [abc]C = {abc, acb}

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 257

If, however, alp.C = alp.D then ind.C may be larger than ind.D since C gives “more freedom” for the per-

mutation of letters. E.g.:

D = {a, b}c2 | {a, c}c2 | {c, b}c2 = {a, b, c}c2 and then ind.D = { }

C = {a, b}c2 | {a, c}c2 and then ind.C = {(b, c), (c, b)}.

In this case

[abc]D = {abc}
tr-pro.(C, D).[abc]D = [abc]C = {abc, acb}

and

[abc]D ⊆ tr-pro.(C, D).[abc]D

Example 12.3.1-2

Let

D = {a, b}c2 | {a, c}c2 , alp.D = {a, b, c}, ind.D = {(b, c)}

C = {b}c2 | {c}c2 , alp.C = {a, c}, ind.C = {(b, c)}

In this case

[bac]D = {bac}
tr-pro.(C,D).[bac]D = [bc]D = {bc, cb}

Poprosiłem Andrzeja o uzupełnienie. ???

Consider now two word languages L1 and L2. By a synchronization of these languages we mean a word lan-

guage over Alp = alp.L1 | alp.L2 defined as follows:

L1 ║ L2 = {w | w : Alp*, pro.(alp.Li, Alp).w : Li, i = 1,2}

Theorem 12.3.1-3 (see [72]) The synchronization of word languages is commutative, associative and distrib-

utive over arbitrary unions, i.e. for any word languages L, L1, L2, L3, and any family of word languages {Li | i
: Ind} over a common alphabet:

L1 ║ L2 = L2 ║ L1

L1 ║ (L2 ║ L3) = (L1 ║ L2) ║ L3

(U {Li | i : Ind}) ║ L = U {Li ║ L | i : Ind} ■

Consider two trace languages TL1 and TL2 over two dependencies D1 and D2 respectively. By a synchroniza-

tion of these trace languages we mean a trace language over alphabet Alp = alp.D1 | alp.D2 and dependency
D = D1 | D2 defined as follows

TL1 ║ TL2 = {[w] | w : Alp*, tr-pro.(Di, D).t : TLi , i = 1,2}

Theorem 12.3.1-4 (see [72]) For any dependencies D1 and D2, and any word languages L1 and L2 over

alp.D1 and alp.D2 respectively the following equality holds:

[L1]D1 ║ [L2]D2 = [L1 ║ L2] D1 | D2 ■

Theorem 12.3.1-5 (see [72]) The synchronization of trace languages is commutative, associative and distrib-

utive over arbitrary unions, i.e. for any trace languages TL, TL1, TL2, TL3, and any family of trace languages

{TLi | i : Ind} over a common alphabet:

TL1 ║ TL2 = TL2 ║ TL1

TL1 ║ (TL2 ║ TL3) = (TL1 ║ TL2) ║ TL3

(U {TLi | i : Ind}) ║ TL = U {TLi ║ TL | i : Ind} ■

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 258

12.3.2 Trace languages and Petri Nets

One of the most important fields of applications of trace languages are Petri nets. Trace languages play the

same role for Petri nets, as regular word languages for iterative programs (programs without recursive proce-

dures). Below we sketch this construction following again [72]. By a Petri net we mean a quadruple

net = (Place, Transition, Flow, Ini)

where

pla : Place a finite set of elements called places

tra : Transition a finite set of elements called transitions

Flow ⊆ Place x Transition | Transition x Place flow relation

Ini ⊆ Place initial marking

and where the following assumptions are satisfied

Place ∩ Transition = {}

Flow ∩ Flow-1 = {} no place is an entry and an exit of the same transition

dom.Flow | cod.Flow = Pla | Tra there are no isolated places or transitions

Now, let for any tra : Transition

Entry.tra = {pla | (pla, tra) : Flow} entries of transition tra
Exit.tra = {pla | (tra, pla) : Flow} exits of transition tra
Neigh.tra = Entry.tra | Exit.tra neighborhood of transition tra

By a marking of a net we mean any set of places of this net including an empty set:

mar : Marking = Sub.Place

With every transition we assign a partial transition function of the net which describes the transformation of

an input marking into an output marking that occurs when this transition is executed (fired).

Tf : Transition ⟼ Marking → Marking

A. Mazurkiewicz defines this function in the following way:

Tf.tra.marin = marfi iff (in – initial, fi – final)

 Entry.tra ⊆ marin and all entries of tra are marked

Exit.tra ∩ marin = {} and no exit of tra is marked

marfi = Exit.tra | (marin – Entry.tra)

An explicit definition of this function may be the following

Tf.tra.mar =

Entry.tra ⊆ mar and Exit.tra ∩ mar = {} ➔ Exit.tra | (mar – Entry.tra)

true ➔ ?

As we see, if all entry places of tra are marked, and no exit places of tra are marked, then the output marking

exists and consists of all exit places of tra plus the “unused” places of the initial marking, i.e., mar – En-
try.tra. In that case we say that marking mar enables transition tra.

Two particular cases of this definition are to be pointed out.

If Entry.tra = {} — in this case we say that tra is an orphan — then tra is enabled by any marking mar
disjoint with Exit.tra including the empty marking. In this case

Tf.tra.mar = Exit.tra | mar

Tf.tra.{} = Exit.tra

The interpretation of these facts are quite natural. Entry and exit places of a transit define a necessary and

sufficient condition to fire that transit. This condition allows for a firing of a transition if all entry places are

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 259

marked and no exit places are marked. No entry places and empty marking (hence no marks in exit places)

means that the firing condition is satisfied.

The second case to be considered is when Exit.tra = {}. In that case tra is said to be a widow, and for any

marking mar which satisfies Entry.tra ⊆ mar we have

Tf.tra.mar = mar – Entry.tra

In particular

Tf.tra.(Entry.tra) = {}

By a path of transitions or simply a path, we mean any finite, possibly empty, sequence of transitions:

pat : Path = Transitionc*

Now, we can generalize the single-step function Tf to a many-steps function called the reachability function

and defined as follows:

Rf : Path ⟼ Marking → Marking

Rf.(tra1,…,tran).mar =
 n = 0 ➔ mar
 true ➔ Tf.tran.(Rf.(tra1,…,tran-1).mar)

Notice that since Tr.tra is a partial function on markings, so is Rf.pat. If Rf.pat.mar is defined then pat is

said to be a symbolic execution from mar to Rf.pat.mar. If mar = Ini, then pat is called an initial execution.

By the sequential symbolic behavior of a Petri net, in symbols Sbe.net we mean the set of all initial execu-

tions of net:

Sbe.net = {pat | Rf.pat.Ini = !}

Notice that Sbe.net always includes empty path and is prefix closed. The latter property allows for a repre-

sentation of infinitistic behaviors of nets by infinite branches (see Sec. 12.2.2) of initial executions

pat1 ⊏ pat2 ⊏ …

Two cases are of particular interest for further investigations. They correspond to atomic nets. A net is said to

be atomic if it includes one place only. Atomic nets may be marked or unmarked. If such a net is marked then

the initial marking of that net consists of its unique place. Otherwise we assume that the initial marking is

empty. Now, consider two such nets on Fig. 12.3-1 where A and B represent any finite or empty sets of tran-

sitions.

Fig. 12.3-1 Two atomic nets

The sequential behaviors of these nets are the following languages:

(BA)*(B | {()}) — first net

(AB)*(A | {()}) — second net

If A and B are not empty, both these nets represent loops which is due to the fact that the marking generated

by widow B is empty, and, in turn, empty marking fires orphan A. Due to the fact that both languages are

prefix closed, they both represent not only finite but also infinite loopings.

Let’s return now to the case of arbitrary nets, and observe that the ordering of transitions in their paths

may have two causes:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 260

1. it may be due to the sequential nature of executions; we simply have to put transitions one after an-

other even if they can be executed independently (e.g. in parallel),

2. it may be due to the structure of the net which forces some transitions to be fired before some others.

To distinguish between these two causes in the description of net behaviors, we replace word languages by

trace languages with a dependency relation between transitions defined in the following way:

(tra1, tra2) : Dep.net iff Neigh.tra1 ∩ Neigh.tra2 ≠ {}

As we see, two transitions are dependent on each other if one of the following conditions is satisfied:

• they share a common entry, i.e. they compete in taking a token from it,

• they share a common exit, i.e., they compete in putting a token into it,

• an exit place of the one is an entry place of the other, i.e., one of them waits for the firing of the other.

Theorem 12.3.2-1 (see [72]) For any two initial paths pat1, pat2 of net, if pat1 ≡Dep.net pat2 then Rf.pat1.Ini
= Rf.pat2.Ini ■

By the concurrent symbolic behavior of net we shall mean the following trace language generated from the

sequential behavior of net:

Cbe.net = [Sbe.net]Dep.net

Since in a net any independent transitions may be fired in an arbitrary order, the following fact is easy to see:

Fact 12.3.2-1 For any net net its sequential behavior Sbe.net is Dep.net-complete, i.e.

Sbe.net = T2L.([Sbe.net]Dep.net).

If Dep.net is full, then the net is said to be sequential. In that case its concurrent behavior is a sequential

trace language (Sec. 12.3.1).

Fact 12.3.2-2 If net is sequential, then Sbe.net is the unique representant of Cbe.net.

Note that in a general case Sbe.net is the largest representant of Cbe.net.

Now, Petri nets may be given an executional semantics in the domain of trace languages. To do that A.

Mazurkiewicz defines a universal operation of composition of two nets with disjoint sets of places. Note that

the sets of transitions need not be disjoint112. Let

neti = (Placei, Transitioni, Flowi, inii) for i = 1,2

where Place1 ∩ Place2 = {}. By composition of these two nets, in symbols net1 + net2 we mean the net:

net = (Place, Transition, Flow, Ini)

where

Place = Place1 | Place2
Transition = Transition1 | Transition2
Flow = Flow1 | Flow2
Ini = Ini1 | Ini2

As is easy to see, the composition of nets is associative and commutative. Besides, the dependency relation of

the resulting net is the union of dependency relations of component nets.

Dep.net = Dep.net1 | Dep.net2

The central theorem of Mazurkiewicz’s approach to Petri nets is the following:

Theorem 12.3.2-2 Cbe.(net1 + net2) = Cbe.net1 ║Cbe.net2 ■

112 In fact, this is what makes the composition a non-trivial operation.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 261

A theorem which completes our sketch of Mazurkiewicz trance theory is about a decomposition of a net into

a family of atomic nets. By an atom of net determined by a place pla : Place we mean a one-place net de-

fined as follows:

netpla = ({pla}, Trapla, Flowpla, Inipla)

where

Trapla = {tra | (tra, pla) : Flow or (pla, tra) : Flow} transitions adjacent to pla

Flowpla = {(tra, pla) | pla : Exit.tra} | {(pla, tra) | pla : Entry.tra} edges including pla

Inipla = Ini ∩ {pla} either {pla} or empty set {}

An atom of a Petri net consist of only one place plus all the edges that lead to or from this place including

their transitions. Clearly

Theorem 12.3.2-3 Every Petri net is a composition of its atoms. ■

As an immediate consequence of theorems 12.3.2-2 and 12.3.2-3 we may conclude

Theorem 12.3.2-4 The concurrent behavior of a Petri net is a synchronization of concurrent behaviors of all

its atoms. ■

12.3.3 Petri nets redefined

For the sake of building a denotational model of Petri nets we shall redefine the concepts of a net in a way

equivalent to the former but more suitable for building an algebra of nets. In short, nets will be defined as

finite sets of atoms.

Let Identifier be a set of identifiers over an alphabet including letters and digits. By an atom over Identifi-
er we mean a 4-tuple which represents a marked or an unmarked net with one place:

ato : Atom = Interface x Place x Marking x Interface

where

int : Interface = FinSet.Identifier
pla : Place = Identifier
mar : Marking = {0, 1}

We assume that both, places and transitions, are identifiers. In an atom (inp-int, pla, mar, out-int) the inter-

faces inp-int and out-int are called respectively input interface and output interface.

By an abstract Petri net over Identifier we mean any finite set of atoms with mutually different places.

We call them “abstract nets” since in Sec. 12.3.4 we introduce concrete nets. Formally, they are, of course,

different from nets of Sec. 12.3.2. We define two domains which will become carriers of the future algebra

of abstract nets

abn : AbsNet = AbstractNet.Identifier
int : Interface = FinSet.Identifier

where AbstractNet is a domain constructor analogously as ⟹ or ⟼.

An abstract net abn-1 is said to be a subnet of abstract net abn-2 if abn-1 ⊆ abn-2113. Abstract nets abn-
1 and abn-2 are said to be separated if their sets of places and of transitions are disjoint. The constructors of

the algebra of abstract nets are the following:

build-empty-interface : ⟼ Interface

add-to-interface : Identifier x Interface ⟼ Interface

build-unmarked-atom : Interface x Identifier x Interface ⟼ AbsNet

build-marked-atom : Interface x Identifier x Interface ⟼ AbsNet

113 Note that this notion of a subnet may be different from such notions defined by other authors.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 262

assemble-abs-nets : AbsNet x AbsNet ⟼ AbsNet

We skip obvious definitions of the first four constructors. To define the last one we introduce an auxiliary

function of prefixing places of nets with digits ‘1’ and ‘2’:

prefix : AbsNet x {‘1’, ‘2’} ⟼ AbsNet
prefix.((inp, pla, mar, out), p) = (inp, p ● pla, mar, out) where p : {‘1’, ‘2’}
prefix.({ato-1,…,ato-n}, p) = {prefix.(ato-1, p),…,prefix.(ato-n, p)}

The operation of assemblage of two abstract nets is defined in the following way:

assemble-abs-nets.(abn-1, abn-2) = prefix.(abn-1, ‘1’) | prefix.(abn-2, ‘2’)

Now, due to the Theorem 12.3.2-3, we can claim that for every Petri net as defined in Sec. 12.3.2 there exist

an “equivalent” abstract net, and vice versa. By “equivalent nets” we mean that their corresponding graphs

are isomorphic.

Having defined an algebra of abstract nets we have to define three functions which describe their symbolic

behaviors:

Sbe : AbstractNet.Identifier ⟼ Lan.Identifier sequential symbolic behav-

ior

Cbe : AbstractNet.Identifier ⟼ TraLan.Identifier concurrent symbolic behav-

ior

Dep : AbstractNet.Identifier ⟼ FinSet.(Identifier x Identifier) dependency rela-

tion

We denote them by the same symbols as in Sec. 12.3.2, and, of course, they must correspond — in an obvi-

ous sense — to these functions. All three function will be defined by structural induction starting from two

basic cases of atomic nets:

ato = (inp, pla, 0, out) and ato = (inp, pla, 1, out).

In this case (cf. Fig. 12.3-1):

Sbe.ato = (inp x out)c* x (inp | {()}) Sbe.ato = (out x inp)c* x (out | {()})114
Dep.ato = (inp | out) x (inp | out) Dep.ato = (inp | out) x (inp | out)
Cbe.ato = [Sbe.ato]Dep.ato Cbe.ato = [Sbe.ato]Dep.ato

In the case of atomic nets the dependency relations are full, and therefore their concurrent behaviors are se-

quential.

Note that a sequential behavior of a net is a set of sequence of identifiers representing transitions. Conse-

quently it may be regarded as a language over an alphabet Identifier. Since identifiers are themselves se-

quences of letters, in the definition of Sbe.ato we have used Cartesian product and Cartesian star rather than

concatenation and star of languages. Now, given two arbitrary abstract nets abn-1 and abn-2 and their com-

position

abn = assemble-abs-nets.(abn-1, abn-2)

we set (cf. Theorem 12.3.2-2)

Cbe.abn = Cbe.abn-1 ║ Cbe.abn-2
Sbe.abn = T2L.(Cbe.abn)
Dep.abn = Dep.abn-1 | Dep.abn-2

We recall that by the definition of the synchronization operation ║, traces of Cbe.abn are built over

Dep.abn. Note now that the following equations are satisfied

Sbe.abn = T2L.(Cbe.abn-1 ║ Cbe.abn-2) = by the definition of Cbe

114 Here we half formally assume that Cartesian product is associative which means that (inp x out)c* and (inp x out)c*

are set of sequences of identifiers, rather than set of sequences of pairs of identifiers.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 263

 T2L.([Sbe.abn-1]Dep.abn-1 ║ [Sbe.abn-2]Dep.abn-2) = by Theorem 12.3.1-4

 T2L.([Sbe.abn-1║ Sbe.abn-2] Dep.abn-1 | Dep.abn-2)

This means that the sequential behavior of an assemblage of two nets is expressible as a combination of the

sequential behaviors of the component nets.

Fact 12.3.3-1 For any two abstract nets abn-1 and abn-2

Sbe.(assemble-abs-nets.(abn-1, abn-2)) = T2L.([Sbe.abn-1 ║ Sbe.abn-2] Dep.abn-1 | Dep.abn-2).

It is worth recalling in this context that (cf. Fact 12.3.2-1) the equality:

Cbe.(assemble-abs-nets.(abn-1, abn-2)) =

[Sbe.(assemble-abs-nets.(abn-1, abn-2))] Dep.abn-1 | Dep.abn-2

and the fact that Sbe.(assemble-abs-nets.(abn-1, abn-2)) is Dep.abn-1|Dep.abn-2 – complete.

Consider as an example an abstract net consisting of two interleaving loops in Fig. 12.3-2.

Fig. 12.3-2 A net with two interleaving transitions

This net may be regarded as an assemblage of four atomic nets, where a stands for {(a)}, and similarly for

other transitions:

abn-1 = (b, p, 1, a), Sbe.abn-1 = (ab)* (a | ()), Dep.abn-1 = {a, b}c2

abn-2 = (b, q, 0, a), Sbe.abn-2 = (ab)* (a | ()), Dep.abn-2 = {a, b}c2

abn-3 = (a, r, 0, c), Sbe.abn-3 = (ac)* (a | ()), Dep.abn-3 = {a, c}c2

abn-4 = (c, s, 1, a), Sbe.abn-4 = (ac)* (a | ()), Dep.abn-4 = {a, c}c2

Since the dependency relations of all these nets are full, they are sequential nets, and their concurrent behav-

iors are sequential trace languages. The same concerns the assembled nets

abn-12 = assemble-abs-nets.(abn-1, abn-2), Dep.abn-12 = {a, b}c2

abn-34 = assemble-abs-nets.(abn-3, abn-4), Dep.abn-34 = {a, c}c2

In this case

Cbe.abn-12 = [(ab)* (a | ())] ║ [(ab)* (a | ())] = by Theorem 12.3.1-4

 [((ab)* (a | ())) ║ ((ab)* (a | ()))] =

 [(ab)* (a | ())]

Sbe.abn-12 = (ab)* (a | ()) by Fact 12.3.2-2 since abn-12 is sequential

Analogously

Cbe.abn-34 = [((ac)* (a | ()))]
Sbe.abn-34 = (ac)* (a | ()))

Assembling these two sequential nets we get a non-sequential net:

abn = assemble-abs-nets.(abn-12, abn-34) with Dep.abn = {a, b}c2 | {a, c}c2,
ind.Dep.abn = {(b, c), (c, b)}

For this net

Cbe.abn = [(ab)* (a | ())] ║ [(ac)* (a | ())] =

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 264

 [((ab)* (a | ())) ║ ((ac)* (a | ()))]
Sbe.abn = T2L.[((ab)* (a | ())) ║ ((ac)* (a | ()))]

12.3.4 Petri nets with data flow

Petri nets defined so far describe control flows of concurrent programs. To enrich them with a mechanism of

data flow we assign bundles of computations to transitions. Let State be an arbitrary set of states. At this

stage of our investigations we do not need to assume anything about states. By transition dictionaries we

mean mappings:

tdi : TraDic = Identifier ⟹ Bun.State

which assign bundles of states to transitions. By a concrete net we mean a pair consisting of an abstract net

and a transition dictionary:

cne : ConNet = AbsNet x TraDic

Concrete net (abn-1, tdi-1) is called a subnet of a concrete net (abn-2, tdi-2) if

abn-1 ⊆ abn-2 and tdi-1 ⊆ tdi-2.

A concrete net (abn, tdi) is said to be well formed if all transitions of abn belong to the domain of tdi. By a

concrete execution of a well-formed net (abn, tdi) we mean a sequence of pairs

((tra-1, com-1)…,(tra-n, com-n)) where com-i : Statec+

such that

(1) (tra-1,…,tra-n) : Sbe.abn
(2) com-i : tdi.tra-i for i = 1;n
(3) com-1 ● … ● com-n ≠ ()

Condition (1) expresses the fact that a concrete execution can happen symbolically, and condition (3) — that

it can happen semantically.

We say that a concrete execution starts in a set of states con ⊆ State if the first state of com-1 belongs to

con. By

coe : ConExe.cne = {((tra-1, com-1)…,(tra-n, com-n)) | (1), (2), (3) satisfied}

we shall denote the set of all concrete executions of a well-formed concrete net cne. By a denotational be-

havior of a well-formed concrete net (abn, tdi) we mean a bundle defined in the following way:

Dbe.(abn, tdi) = {com-1 ● … ● com-n | (∃ (tra-1,…,tra-n) : Sbe.abn)

 ((tra-1, com-1)…,(tra-n, com-n)) : ConExe.(abn, tdi)}

We say that a concrete executions is a prefix of another one, in symbols

((tra-1, com-11),…,(tra-1, com-1n)) ⊏ ((tra-21, com-21),…,(tra-2m, com-2m)) (*)

iff

n < m and ((tra-1, com-11),…,(tra-1, com-1n)) = ((tra-21, com-21),…,(tra-2n, com-2n))

Of course, ConExe.(abn, tdi), similarly to Sbe.abn is prefix closed. Note that by the definition of a con-

crete execution if (*) holds then

com-21 ● … ● com-2m ≠ ()

and therefore

com-11 ● … ● com-1n ⊏ com-21 ● … ● com-2m or

com-11 ● … ● com-1n = com-21 ● … ● com-2m

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 265

The equality may take place if all computations com-2(n+1),…,com-2m are appropriate one-element com-

putations.

By a concrete branch of a concrete net we mean a finite or infinite sequence of concrete executions of this

net such that each of them, except the last one, if it exists, is a prefix of the next one. We say that a concrete

execution is terminal in a concrete net if it is not a prefix of any other concrete execution of this net.

By an assemblage of two concrete nets we mean a concrete net whose abstract component is an assem-

blage of abstract nets and the dictionary is an overwriting of dictionaries:

assemble -con-nets : ConNet x ConNet ⟼ ConNet

assemble -con-nets.((abn-1, tdi-2), (abn-2, tdi-2)) =

(assemble-abs-nets.(abn-1, abn-2), tdi-1 ♦ tdi-2)).

By a cocoon115 we mean a tuple (in-tra, (abn, tdi), out-tra) such that

1. (abn, tdi) is a well-formed concrete net,

2. in-tra and out-tra are transitions of abn,

3. in-tra has no entrance places (orphan) and out-tra has no exit places (widow) in abn,

4. in-tra is the only orphan and out-tra is the only widow of abn,

5. initial marking of abn is empty.

Note that by the properties 4. and 5. all sequential executions of abn start with in-tra.

By the flow of a cocoon con = (in-tra, (abn, tdi), out-tra) we mean a bundle generated by symbolic exe-

cutions of concrete net (abn, tdi) between input and output transitions, i.e. all executions at all (!) which ter-

minate in out-tra.

Flow.(in-tra, abn, tdi, out-tra) =

{com-1 ● … ● com-n | (∃ (tra-1,…,tra-n) : Sbe.abn)

 tra-n = out-tra and

 ((tra-1, com-1)…,(tra-n, com-n)) : ConExe.(abn, tdi)}

Of course

Flow.(in-tra, abn, tdi, out-tra) ⊆ Dbe.(abn, tdi).

Let con-1, con-2 ⊆ State. A cocoon coc is said to be strongly totally correct116 or simply correct wrt a

precondition con-pr and a postcondition con-po, in symbols

pre con-pr; coc post con-po

if

1. there is no infinite concrete branch that starts with a state in con-pr; no semantic livelock,

2. all terminal concrete execution that start with a state in con-pr terminate with transition out-tra in a

state in con-po; no semantic deadlock.

Of course, pre con-pr; coc post con-po iff (see Sec. 12.2.3)

115 We use this word since a cocoon may be said to be a thread with a skein in the middle.

116 In the case of deterministic programs total correctness means that the (unique) execution of the program termi-
nates. The clean total correctness means that the execution terminates without abortion, and the strong total correct-
ness of nondeterministic programs — that all executions terminate without abortion.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 266

con-p ⊆ Flow.coc ■ con-po

Note that the freeness of semantic livelock and deadlock of a cocoon does not imply that the corresponding

abstract net if free of livelock or deadlock respectively.

Poproszę kolegów o przykład ???

Let a concrete net cne-1 be a subnet of a concrete net cne-2. By a projection of a concrete executions
coe of cne-2 on a subnet cne-1, in symbols

pro.abn-1.coe

we mean the result of removing from coe all pairs (tra, com) such that tra is not a transition of con-1. For a

formal definition of a similar function see Sec. 12.3.1.

Consider two concrete nets cne-i = (abn-i, tdi-i) for i = 1,2, two corresponding sets of states (conditions)
con-i ⊆ State for i = 1,2, and let

cne = assemble-con-net.(cne-1, cne-2)

We say that these nets are semantically independent for corresponding conditions, if

(1) abn-1 and abn-2 are separated and

(2) for any concrete execution of their composition

coe : ConExe.(assemble-con-net.(cne-1, cne-2))

 if pro.abn-i.coe starts with a state in con-i then

 pro.abn-i.coe : ConExe.cne-i for i = 1,2.

Condition (2) says that every projection of coe on abn-i that starts in con-i could happen as an independent

execution of cne-i.

Fig. 12.3-3 Two concrete dependent nets

Consider as an example two concrete nets in Fig. 12.3-3, and assume their following properties:

1. both nets operate on states that are mappings from identifiers x, y to arbitrary numbers, i.e.

sta : State = {x, y} ⟹ Number

2. a common precondition con for both nets claims that variables x and y have been declared to be of

type integer,

3. bundles assigned to transitions are the following sets of pairs of states (they are functional bundles):

a. {(sta, sta[x/2]) | sta : State}

b. {(sta, sta) | sta : State and sta.x > 1}

c. {(sta, sta) | sta : State and sta.x < 1}

d. {(sta, sta[x/0]) | sta : State}

e. {(sta, sta[x/1]) | sta : State}

The following sequence is an example of a concrete execution of the assemblage of cne-1 and cne-2 where

sta is an arbitrary state which satisfies con:

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 267

 (a, (sta, sta[x/2]), (d, (sta[x/2], sta[x/0]), (c, (sta[x/0], sta[x/0])), (e, (sta[x/0], sta[x/1]))

The projection of this execution on cne-1 is the following

 (a, (sta, sta[x/2]), (c, (sta[x/0], sta[x/0]))

and it is not a concrete execution of net-1 since

(sta, sta[x/2]) ● ((sta[x/0], sta[x/0])) = ()

If in transit d we set y:=0 then our two concrete nets become semantically independent. Note that our nets

become independent also if in d we set x:=2.

12.4 Building a language of concurrent programs

12.4.1 General assumptions about the language

In this section we propose a sketchy idea of how to extend a denotational model of a languages of sequential

programming such as, e.g., Lingua or Lingua-SQL, to a denotational model covering concrete Petri nets.

Similarly as in the case of Lingua-SQL we shall restrict our investigations to an algebra of denotations.

Let’s assume at the beginning that AlgDen is a given algebra to be extended, and that the denotations of

instructions, declarations and programs in this algebra are bundles of computations. The extended algebra

AlgDenCCP is created from the former by adding to it the following new carriers:

abn : AbsNet = PetriNet.Identifier Petri nets

int : Interface = FinSet.Identifier interfaces

tdi : TraDic = Identifier ⟹ InsDen transition dictionaries

cne : ConNet = AbsNet x TraDic concrete nets

and the corresponding constructors

build-single-interface : Identifier ⟼ Interface

add-to-interface : Identifier | Interface ⟼ Interface

build-unmarked-atom : Interface x Identifier x Interface ⟼ AbsNet

build-marked-atom : Interface x Identifier x Interface ⟼ AbsNet

assemble-abs-nets : AbsNet x AbsNet ⟼ AbsNet

build-dictionary : Identifier x TraDen ⟼ TraDic

add-to-dictionary : Identifier x TraDen x TraDic ⟼ TraDic

create-con-net : AbsNet x TraDic ⟼ ConNet

asamble-con-nets : ConNet x ConNet ⟼ ConNet

encapsulate-con-net : ConNet ⟼ InsDen

An instruction in the new algebra may be an instruction in the former sense or an encapsulated concrete net.

In turn, transitions may carry arbitrary instructions.

The definitions of all new constructors but the last one are trivial. The last constructor given a concrete net

returns a bundle of computations that belongs to the domain of instruction denotations:

encapsulate-con-net.(net, tdi) = Dbe.(net, tid)

Note that this constructor “forgets”, in a sense, the structure of the argument net replacing it by a correspond-

ing bundle. This bundle may appear later either as an argument of a constructor of instruction denotations in

the basic algebra or a transition denotations assigned to a dictionary.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 268

12.4.2 A case study of a structured constructor

New constructors described in Sec. 12.4.1 allow to build concrete nets with arbitrary net structures. In the

world of sequential programs this “flexibility” may be compared to allowing arbitrary flowchart programs

built by goto’s. It is a well-known fact that such solution leads to programs that are hard to understand and

even harder to prove correct.

A solution of this problem for sequential programming consists in restricting the control structures of in-

structions by structural constructors. For each such constructor we can create a dedicated proof rule, and in

our case — a construction rule that guarantees correctness. In this way, instead of struggling with correctness

proofs of “arbitrary programs” we are building a limited class of programs but their correctness proofs are

implicit in the processes of their construction.

Here we propose an analogous solution for concurrent programming. However, we do not attempt to pro-

vide any “complete collection” of constructors for building nets since this would lead to a profound research

certainly going beyond the scope of our book. We shall limit our attention to only one of a structured con-

structor of concurrent programs that given two critical sections and two corresponding non-critical sections

builds a net with Dijkstra’s semaphores synchronizing the cooperation of sections. The expected correctness

property of such a net, which we shall call adequacy, is described as follows:

1. the net is deadlock free,

2. each of its sections is livelock free,

3. critical sections are mutually excluded, i.e. their transitions can’t interleave,

4. each non-critical section is excluded for its critical section,

5. after an execution of a non-critical section its corresponding critical section will be executed — a non-

starvation property.

Fig. 12.4-1 Critical sections with semaphores

We start from building such a net in using constructors defined in Sec. 12.4.1. The structure of the abstract

part of our target net is shown in Fig. 12.4-1. It consists of four subnets representing two critical sections, and

two non-critical sections (all four in red) plus one synchronizing net (in black), that we shall call SynNet,
including semaphores.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 269

The target concrete net, let’s call it SemNet, may be built as a composition of these five nets:

SemNet = assemble-con-nets.(SynNet,
assemble-con-nets.((N1, tdi-n1),

 assemble-con-nets.((C1, tdi-com-1),
 assemble-con-nets.((N2,, tdi-n2), (C2, tdi-c2)))))

Now, the question is, what do we have to assume about our five nets to make sure that SemNet is adequate.

We start from assuming that the four sections constitute mutually separated cocoons:

non-cri.1 = (in.N1, (N1, tdi-nc.1), out.N1)
critical.1 = (in.C1, (C1, tdi-cr.1), out.C1)
non-cri.2 = (in.N2, (N2, tdi-nc.2), out.N2)
critical.2 = (in.C2, (C2, tdi-cr.2), out.C2)

Next we assume that the abstract part AbsSynNet of the synchronization net SynNet is a composition (a set)

of the following atomic nets:

(cancel.1, c2N1, 1, in.N1)

(out.N1, N2r.1, 0, raise.1)

(raise.1, r2c.1, 0, check.1)

(check.1, c2C.1, 0, in.C1)

(out.C1, C2c.1 0, cancel.1)

(cancel.2, c2n.2, 1, int.N2)

(out.N2, n2r.2, 0, raise.2)

(raise.2, r2r.2, 0, check.2)

(check.2, r2c.2, 0, int.N2)

(out.C2, C2c.2, 0, cancel.2)

({cancel.1, canclel.2}, syn, 1, {check.1, check.2)

For simplicity we write transition for {transition}, and we give mnemotechnical names to places, e.g. c2N1
is read as “from cancel to N1”.

To assure that SynNet realizes the mechanism of semaphores we have to assign an appropriate dictionary

to this net. To do that we assume that queue is a variable which stores a FIFO queue of digits ‘1’ and ‘2’,

and we define three typical operations on queues:

first.(q1,…,qn) = q1, first.() = ? (we assume that first is a partial function)

put.q.(q1,…,qn) = (q1,…,qn, q)

cut.(q1,…,qn) = (q2,…,qn), cut.() = ()

The dictionary tdi-sta-n of SynNet is defined in the following way:

tdi-sn.cancel.1 = {(sta, sta[queue/cut.(sta.queue) }
tdi-sn.raise.1 = {(sta, sta[queue/put.’1’.(sta.queue)]}
tdi-sn.check.1 = {(sta) | first.(sta.queue) = ‘1’, }
tdi-sn.cancel.2 = {(sta, sta[queue/cut.(sta.queue) }
tdi-sn.raise.2 = {(sta, sta[queue/put.’2’.(sta.queue)]}
tdi-sn.check.2 = {(sta) | first.(sta.queue) = ‘2’, }

Hence SynNet = (AbsSynNet, tdi-sn). Now, we have to formulate assumptions sufficient for SemNet to

be adequate. In the first place cocoons must be free of deadlocks and livelocks. Precisely speaking we have to

assume that they are correct wrt some pre- and post-conditions. These conditions should also guarantee that

semaphores will work as expected. This leads us to the following assumptions about SemNet:

There exist sets of states (pre- and post-conditions):

nc-pre.i and nc-post.i for i = 1,2,
cr-pre.i and cr-post.i for i = 1,2

such that:

a. pre nc-pre.i; non-cri.i post nc-post.i for i = 1,2,
b. pre cr-pre.i; critical.i post cr-post.i for i = 1,2,
c. for i ≠ j, non-cri.i is semantically independent of non-cri.j and critical.j under corresponding precon-

ditions,

d. for i ≠ j, critical.i is semantically independent of non-cri.j and critical.j under corresponding precon-

ditions,

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 270

e. cr-post.i ● tdi-sn.cancel.i ⊆ nc-pre.i for i = 1,2
f. nc-post.i ● tdi-sn.raise.i ● tdi-sn.check.i ⊆ cr-pre.i for i = 1,2
g. cr-post.i ● tdi-sn.cancel.i ● tdi-sn.check.j ⊆ cr-pre.j for i ≠ j
h. the value of queue is neither modified nor used by the instructions of cocoons.

Under these assumptions we can claim more about SemNet than just the freeness of deadlock, livelock and

no-starvation. We can prove that for every concrete execution of SemNet that starts either from non-cri.1 in

a state in nc-pre.1 or from non-cri.2 in a state in nc-pre.2, the following properties are satisfied:

1. the executions is free of deadlock and livelock,

2. critical sections critical.1 and critical.2 are mutually excluded, i.e. only one of them may be run at a

time,

3. sections non-cr.i and critical.i are mutually excluded for i = 1,2,

4. after the execution of non-cr.i an execution of critical.i will eventually happen for i = 1,2 (non-

starvations),

5. after the execution of non-cr.i its next execution is possible only after the execution of critical.i, for i
= 1,2,

6. after the execution of critical.i its next execution is possible only after the execution of non-cr.i, for i
= 1,2,

7. transitions of non-cr.i may arbitrarily interleave with transitions of critical.j and non-cri.j for i ≠ j.

At this point we have constructed a net with semaphores using just one constructor assemble-con-net but

our construction does not meet, the following expectations of M. Ben-Ari (see [13] p. 145)

(…) the semaphore is a low-level primitive because it is unstructured. If we were to build a large system us-

ing semaphores alone, the responsibility for the correct use of the semaphores would be diffused among all

the implementors of the system. If one of them forgets to call signal(S) after a critical section, the program

can deadlock and the cause of the failure will be difficult to isolate.

In fact, our solution bases on the assumption that our net constructor receives SynNet as an argument

which means that semaphores are built into SemNet by a programmer. What we would like to have is a con-

structor which given our four cocoons builds SemNet, which means that it builds SynNet which satisfies

conditions from 5 to 8.

Here the critical condition is, of course, 8. To satisfy this condition we have to indicate an identifier

queue with the assumed properties. The simplest constructive solution seems to be the selection of an identi-

fier which is declared in states of nc-pre.1 | nc-pre.2 and does not appear syntactically in the instructions of

our cocoons. Such a solution is, however, not feasible, since, informally speaking, the information carried by

our cocoons is not sufficient to select such an identifier. The only solution that we can see at the moment is to

assume that this identifier is given as an argument of the future constructor, i.e., is given by a programmer. In

that case our expected constructor may be the following:

semaphore-net.(non-cri.1, critical.1, non-cri.2, critical.2, queue) =

 let

 (in.N1, (N1, tdi-nc.1), out.N1) = non-cri.1
(in.C1, (C1, tdi-cr.1), out.C1) = critical.1
(in.N2, (N2, tdi-nc.2), out.N2) = non-cri.2
(in.C2, (C2, tdi-cr.2), out.C2) = critical.2

 SynNet = defined as above

true ➔ assemble-con-nets.(SynNet,
assemble-con-nets.((N1, tdi-n1),

 assemble-con-nets.((C1, tdi-com-1),
 assemble-con-nets.((N2,, tdi-n2), (C2, tdi-c2)))))

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 271

This definition looks similar to that of SemNet however now SynNet is not “given ahead”, but is built out

of the arguments of semaphore-net.

Since SynNet is not an argument of our constructor, its elements should not appear in the prerequisites of

our adequacy rule. Formally they do, but practically they don’t, since if we assume that the pre- and post-

conditions do not depend on variable queue, then 5., 6. and 7. may be reduced to inclusions (i.e. implica-

tions):

cr-post.i ⊆ nc-pre.i for i = 1,2
nc-post.i ⊆ cr-pre.i for i = 1,2
cr-post.i ⊆ cr-pre.j for i ≠ j

Our last remark concerns the way we can view our adequacy rule. If we see it as a proof rule, it is rather poor,

since its prerequisites are pretty strong. However, in our approach we aim at constructing correct programs

rather than proving (arbitrary) programs correct. It practically means that before we apply our constructor we

have to build its arguments in such a way that they have expected properties.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 272

13 WHAT REMAINS TO BE DONE

Even though the book is already of a considerable volume, the majority of subjects have only been sketched.

What remains to be done is enough for a few more books and also as a research and development area for

many researchers and developers. Below we suggest a preliminary list of subjects which is certainly not

complete. It considers both research problems as well as programming (implementational) tasks.

13.1 Computer-aided program development

On a theoretical ground, our method of the development of correct metaprograms offers a collection of math-

ematical tools dedicated to developing and proving the correctness of metaprograms, i.e., theorems of the

form:

pre prc : spr post poc.

It is fairly evident that the use of our tools in practice requires an assistance of a software system. Below we

share some very preliminary thoughts about such a system. In our opinion it might consist of three main

modules:

1. an intelligent editor supporting the writing of metaprograms in Lingua-V using Visual Studi Code,

2. a dedicated theorem-prover supporting the application of program-construction rules,

3. an implementation of Lingua, i.e., a parser and an interpreter or compiler.

The first attempt to build an implementation of Lingua (without objects) has been undertaken by a small

group of two teachers (me and Aleksy Schubert) and three of our students at the Department of Mathematics,

Informatics, and Mechanics of Warsaw University during the Spring Semester of the year 2020 (see [38]). To

tell the truth, my role was limited in this case to checking if the developed implementation was compatible

with the model of Lingua, as described in this book. The bulk of the work was done by Aleksy and the stu-

dents. The programming language of implementation was OCaml.

The editor of programs should support two types of tasks:

1. keeping derived metaprograms syntactically correct,

2. keeping derived metaprograms statically correct117, e.g., no identifier should be declared twice in one

program, or actual parameters of a procedure should be statically compatible with formal parameters.

The dedicated theorem-prover should assist programmers in:

1. proving metaimplications appearing above the lines in program-construction rules,

2. keeping and updating a library of currently proved theorems.

In turn the library of theorems should include the following sublibraries:

1. a library of system-dependent theorems:

a. basic theorems about data, values, types and denotations appearing in the model of Lingua-V,

b. currently proved program-construction rules,

c. currently proved concrete correct metaprograms,

2. a library of program-dependent theorems for the currently developed program:

117 This concept is related to so called “static semantics” that describes such properties of syntax that can’t be de-
scribed by grammars and therefore can’t be checked by parsers.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 273

a. perpetual conditions in the current program,

b. hereditary conditions associated with current cuts of this programs,

Whereas part 1. of this library would be modified only occasionally, part 2. must be updated in each step of

program development.

As we pointed out in Sec. 9.4.1, the development of a metaprogram may be split into a sequence of steps.

In each step, given some earlier developed metaprograms we create a new metaprogram by means of one of

our construction rules. The application of a rule may require proving some “local lemmas” required by the

rule, e.g., a metaimplication:

con1  con2.

Such a metaimplication will be always proved in the context of the current content of our library, which for-

mally means that our prover will prove the truth of the following metaformula (cf. Sec. 9.3.2):

con1  con2 whenever imm-con and per-con and her-con

where

imm-con is the conjunction of all immunizing condition from part 1.a of the library,

per-con is the conjunction of all perpetual conditions from part 2.a of the library,

her-con is the conjunction of all hereditary conditions from part 2.b of the library.

Similarly, whenever a programmer will develop a metaprogram of the form

pre prc:
 spr
post poc

the prover will elaborate

pre prc and imm-con and per-con and her-con :
 spr
post poc and imm-con and per-con and her-con

In each step of program development the part 2. of the library may be updated.

13.2 Computer-aided language design

The module dedicated to supporting the design of programming languages in our framework might include

the following components:

1. An intelligent editor supporting the writing of the definitions of the algebra of denotations:

a. the definitions of the carriers of the algebra, i.e., the denotational domains; here the editor

might check if domain equations do not include a not acceptable recursion,

b. he definitions of the constructors of the algebra.

2. A system supporting syntax design:

a. a generator of an equational grammar of an abstract syntax for given definition of constructors

from 1.b,

b. a system supporting the development of an equational grammar of concrete syntax out of ab-

stract syntax,

c. a system supporting the generation of an equational grammar of colloquial syntax out of con-

crete syntax,

d. a system supporting the generation of the definition of a restoring transformation.

3. A system supporting the writing of a definition of semantics.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 274

4. A system supporting the development of a parser of the designed language out of the definition of its

syntax.

5. A system supporting the development of an interpreter of the designed language out of the definition

of its syntax and semantics.

6. A system supporting the development of a compiler of the designed language out of the definition of

its syntax and semantics.

Although the tasks of writing a programmer’s interface and a language designer’s interface are in principle

independent, one may think of two possible scenarios of building them:

1. first a version of Lingua is developed without using an interface of a language designer and the latter

is then written in Lingua,

2. a language-designer interface is written in one of existing languages, and later the full definition of

Lingua along with its implementation is developed in this system.

13.3 Techniques of writing user manuals

Denotational models should provide an opportunity to revise current practices seen in the manuals of pro-

gramming languages. On the one hand, new practices should be based on denotational models, but on the

other, do not assume that today's readers are experts in this field. A manual should, therefore, provide some

basic knowledge and notation needed to understand the definition of a programming language written in a

new style. At the same time, we firmly believe that it should be written for professional programmers rather

than amateurs. In our opinion, the role of a manual is not to teach programming skills. Such textbooks are, of

course, necessary, but they should teach the readers what programming is about rather than the technicalities

of a concrete language. Unfortunately, the current practice usually contradicts these principles.

13.4 Programming experiments

For our idea of correct-program development to be noticed by the IT community, some convincing applica-

tions must be shown. In our (preliminary) opinion, an adequate field for such applications may be micropro-

gramming because:

1. microprograms contain a relatively small number of the lines of code,

2. their correctness is highly critical,

3. highly critical is also the memory- and time-optimisation of such programs.

13.5 Building a community of Lingua supporters

Our methods of designing programming languages and constructing programs may be assessed positively or

negatively, but one thing seems evident ― they are pretty far from current practices. The book offers a far-

going change, and such changes always provoke groups of opponents and supporters. The former should be

convinced, and the latter must be strengthened. And, of course, one has to start from the first task.

To realize that task, one has to give the potential supporters some — may be very simple — still

sufficiently practical version of Lingua. An alternative may consist of encouraging them to build their ver-

sion. The first solution seems somewhat unrealistic since it would require finding an investor for a strange

and utterly unknown product. The other way is that an experimental Lingua is built by volunteers and for

volunteers, as in the case of Linux, Joomla!, or MySQL. However, such a product, although freely available,

should not be open-source since this might lead to mathematically incorrect solutions and consequently to

unsound program-construction rules.

Therefore, the Lingua builders community must elaborate rules of accepting new members and giving

them the right to join implementation teams.

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 275

14INDICES AND GLOSSARIES

14.1 References

[1] Aalst Wil van der, Hee Kees van, Workflow management: models, methods, and systems (Coopera-

tive Information Systems), MIT Press 2004

[2] Ahrent Wolfgang, Beckert Bernhard, Bubel Richard, Hähnle Reiner; Schmitt Peter H., Ulbrich Matti-

as (Eds.), Deductive Software Verification — The KeY Book; From Theory to Practice, Lecture Notes

in Computer Science 10001, Springer 2016

[3] Aho A.V., Ullman J.D., The Theory of Parsing, Translation, and Compilation, volume 1, Parsing,

Prentice-Hall, Englewood Cliffs, NJ 1972

[4] Apt K.R., Ten Years of Hoare's Logic: A Survey - Part 1, ACM Trans. Program. Lang. Syst. 3(4):

431-483 (1981)

[5] Apt Krzysztof R., Olderog Ernst-Rüdiger, Fifty years of Hoare's Logic, Springer 2020

[6] Apt Krzysztof R., Boer (de) Frank, S., Olderog Ernst-Rüdiger, Verification of Sequential and Concur-

rent Programs, Third, Extended Edition, Springer 2020

[7] Backus J.W., Bauer F.L., Green J., Katz C., McCarthy J., Naur P. (Editor), Perlis A.J., Rutishauser

H., Samelson K., Vauquois B., Wegstein J.H., Van Wijngaarden A., Woodger M., Report on the al-

gorithmic language ALGOL 60, Numerische Mathematik 2, 106--136 (1960)

[8] Bakker Jaco (de), Mathematical Theory of Program Correctness, Prentice/Hall International 1980

[9] Banachowski Lech, Bazy danych. Tworzenie aplikacji, Akademicka Oficyna Wydawnicza PLJ, War-

szawa 1998

[10] Banachowski Lech, Kreczmar Antoni, Mirkowska Grażyna, Rasiowa Helena, Salwicki Andrzej, An

introduction to Algorithmic Logic ― Metamathematical Investigations of Theory of Programs, T. 2:

Banach Center Publications. Warszawa PWN, 1977, s. 7-99, series: Banach Center Publications,

vol.2

[11] Barringer H., Cheng J.H., Jones C.B., A logic covering undefinedness in program proofs, Acta In-

formatica 21 (1984), pp. 251-269

[12] Bekić Hans, Definable operations in general algebras and the theory of automata and flowcharts

(manuscript), IBM Laboratory, Vienna 1969

[13] Ben-Ari Mordechai, Principles of Concurrent and Distributed Programming, second edition, Addi-

son-Wesley 2006

[14] Binsbergena L. Thomas van, Mosses Peter D., Sculthorped C. Neil, Executable Component-Based

Semantics, Preprint submitted to JLAMP, accepted 21 December 2018

[15] Bjørner Dines, Jones B. Cliff, The Vienna development method: The metalanguage, Prentice-Hall

International 1982

[16] Bjørner Dines, Oest O.N. (ed.), Towards a formal description of Ada, Lecture Notes of Computer

Science 98, Springer Verlag 1980

[17] Blikle Andrzej, Automaty i gramatyki ― wstęp do lingwistyki matematycznej, (Automata and

Grammars ― An Introduction to Mathematical Linguistics) PWN 1971

[18] Blikle Andrzej, Algorithmically definable functions. A contribution towards the semantics of pro-

gramming languages, Dissertationes Mathematicae, LXXXV, PWN, Warszawa 1971

[19] Blikle Andrzej, Nets; complete lattices with a composition, Bull. Acad. Polon. Sci., Sér. Sci. Math.

Astronomy Phys. 19 (1971), pp. 859-863

http://lem12.uksw.edu.pl/images/4/42/Bcp211.pdf
http://lem12.uksw.edu.pl/images/4/42/Bcp211.pdf

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 276

[20] Blikle Andrzej, Equational Languages, Information and Control, vol.21, no 2, 1972

[21] Blikle Andrzej, An algebraic approach to programs and their computations, Mathematical Founda-

tions of Computer Science II (Proc. Symp. High Tatras 1973, High Tatras 1973 pp. 3 – 8

[22] Blikle Andrzej, Proving programs by sets of computations, Mathematical Foundations of Computer

Science III (Proc. Symp. Warsaw-Jadwisin 1974), Lecture Notes in Computer Science, Vol. 28,

Springer Verlag, Heidelberg 1975, pp. 313 – 3558.

[23] Blikle Andrzej, Proving programs by δ-relations, Formalization of Semantics of Programming Lan-

guages and Writing Compilers, (Proc. Symp. Frankfurt am Oder 1974). Elektronishe Infor-

mationesverarbeitung und Kybernetik, 11 (1975), pp. 267 – 274

[24] Blikle Andrzej, An analysis of programs by algebraic means, Mathematical Foundations of Com-

puter Science, Banach Center Publications, vol.2, Państwowe Wydawnictwa Naukowe, Warszawa

1977

[25] Blikle Andrzej, Toward Mathematical Structured Programming, Formal Description of Program-

ming Concepts (Proc. IFIP Working Conf. St. Andrews, N.B Canada 1977, E.J Neuhold ed. pp. 183-

2012, North Holland, Amsterdam 1978

[26] Blikle Andrzej, On Correct Program Development, Proc. 4th Int. Conf. on Software Engineering,

1979 pp. 164-173

[27] Blikle Andrzej, On the Development of Correct Specified Programs, IEEE Transactions on Soft-

ware Engineering, SE-7 1981, pp. 519-527

[28] Blikle Andrzej, The Clean Termination of Iterative Programs, Acta Informatica, 16, 1981, pp. 199-

217.

[29] Blikle Andrzej, MetaSoft Primer ― Towards a Metalanguage for Applied Denotational Semantics,

Lecture Notes in Computer Science, Springer Verlag 1987

[30] Blikle Andrzej, Denotational Engineering or from Denotations to Syntax, red. D. Bjørner, C.B.

Jones, M. Mac an Airchinnigh, E.J. Neuhold, VDM: A Formal Method at Work, Lecture Notes in

Computer Science 252, Springer, Berlin 1987

[31] Blikle Andrzej, Three-valued Predicates for Software Specification and Validation, first published

in VDM’88, VDM: The Way Ahead, Proc. 2nd, VDM-Europe Symposium, Dublin 1988, Lecture

Notes of Computer Science, Springer Verlag 1988, pp. 243-266, later republished in Fundamenta In-

formaticae, January 1991

[32] Blikle Andrzej, Denotational Engineering, Science of Computer Programming 12 (1989), North

Holland

[33] Blikle Andrzej, Why Denotational ― Remarks on Applied Denotational Semantics, Fundamenta In-

formaticae 28, 1996, pp. 55-85

[34] Blikle Andrzej, An Experiment with a user manual based on denotational semantics, preprint 2019,

DOI: 10.13140/RG.2.2.23355.67366

[35] Blikle Andrzej, An Experiment with denotational semantics, SN Computer Science, (2020) 1: 15.

https://doi.org/10.1007/s42979-019-0013-0, Springer

[36] Blikle Andrzej, Jarosław Deminet, Komputerowa edycja dokumentów dla średnio zaawansowanych,

(Computer-assisted edition of documents for medium-advanced authors), Helion 2020

[37] Blikle Andrzej, Mazurkiewicz Antoni, An algebraic approach to the theory of programs, algo-

rithms, languages and recursiveness, Proc. International Symposium and Summer School on Mathe-

matical Foundations of Computer Science, Warsaw-Jabłonna, 1972.

[38] Blikle Andrzej in cooperation with Schubert Aleksander, Dziubiak Marian, Kamas Tomasz, Lingua-

WU Report and a diary of the development of its implementation, a manuscript in statu nascendi

https://doi.org/10.1007/s42979-019-0013-0

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 277

[39] Blikle Andrzej, Tarlecki Andrzej, Naïve denotational semantics, Information Processing 83, R.E.A.

Mason (ed.), Elsevier Science Publishers B.V. (North-Holland), © IFIP 1983

[40] Blikle Andrzej, Tarlecki Andrzej, Thorup Mikkel, On conservative extensions of syntax in system

development, Theoretical Computer Science 90 (1991), 209-233

[41] Bordis Tabea, Runge Tobias, Schaefer Ina, Correctness-by-Construction for Feature-Oriented Soft-

ware Product Lines, Proceedings of the 19th ACM SIGPLAN International Conference on Genera-

tive Programming: Concepts and Experiences (GPCE ’20), November 16–17, 2020, Virtual, USA.

ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3425898.3426959

[42] Branquart Paul, Luis Georges, Wodon Pierre, An Analytical Description of CHILL, the CCITT High-

Level Language, Lecture Notes in Computer Science vol. 128, Springer-Verlag 1982

[43] Chailloux Emmanuel, Manoury Pascal, Pagano Bruno, Developing Applications With Objective

Caml, Editions O'REILLY, http://www.editions-oreilly.fr

[44] Chomsky Noam, Three models for the description of language, IRE Transactions of Information

Theory, IT2, 1956

[45] Chomsky Noam, Syntactic Structures, Hague 1957

[46] Chomsky Noam, On certain formal properties of grammars, Information and Control, 2, 1959

[47] Chomsky Noam, Context-free grammar and pushdown storage, MIT Research Laboratory Electrical

Quarterly Progress Reports 65, 1962

[48] Cohn P.M., Universal Algebra, D. Reidel Publishing Company 1981

[49] Dijkstra Edsger, W., goto statements considered harmful, Communications of ACM, 11, 1968, pp.

147-148

[50] Dijkstra Edsger, W., A constructive approach to the problem of program correctness, BIT 8 (1968)

[51] Dijkstra Edsger, W., A Discipline of Programming, Prentice-Hall, Inc., Englewood Cliffs, New Jer-

sey 1976

[52] DuBois Paul, MySQL, Wydanie II rozszerzone, Mikom, Warszawa 2004

[53] Floyd Richard W., Assigning meanings to programs, Appl. Math. Comput. 19, 1967, pp. 19-32

[54] Forta Ben, SQL w mgnieniu oka, Helion 2015

[55] Ginsburg Seymur, The mathematical theory of context-free languages, New York 1966

[56] Ginsburg Seymur, Rice, H.G., Two Families of Languages Related to Algol, Journal of the Associa-

tion of Computing Machinery, 9 (1962)

[57] Goguen, J.A., Abstract errors for abstract data types, in Formal Descriptions of Programming Con-

cepts (Proc. IFIP Working Conference, 1977, E.Neuhold ed.), North-Holland 1978

[58] Goguen, J.A., Thatcher J.W., Wagner E.G., Wright J.B., Initial algebra semantics, and continuous

algebras, Journal of ACM 24 (1977)

[59] Gordon M.J.C., The Denotational Description of Programming Languages, Springer Verlag, Berlin

1979

[60] Gruber Martin, SQL, Helion 1996

[61] Hoare C.A.R., An axiomatic basis for computer programming, Communications of ACM, 12, 1969,

pp. 576-583

[62] Jensen Kathleen, Wirth Niklaus, Pascal ― User Manual and Report, Springer Verlag 1975

[63] Jones Cliff B., Understanding Programming Languages, Springer 2020

[64] Kleene Steven Cole, Introduction to Metamathematics, North-Holland 1952; later republished in

years 1957, 59, 62, 64, 67, 71

https://doi.org/10.1145/3425898.3426959
http://www.editions-oreilly.fr/

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 278

[65] Konikowska Beata, Tarlecki Andrzej, Blikle Andrzej, A three-valued Logic for Software Specifica-

tion and Validation, w tomie VDM’88, VDM: The Way Ahead, Proc. 2nd, VDM-Europe Symposium,

Dublin 1988, Lecture Notes of Computer Science, Springer Verlag 1988, pp. 218-242

[66] Landin, P. The mechanical evaluation of expressions, BSC Computer Journal, 6 (1964), 308-320

[67] Leszczyłowski Jacek, A theorem of resolving equations in the space of languages, Bull. Acad.

Polonaise de Science, Série de Sci. Math. Astronom. Phys. 19 (1971)

[68] Leroy Xavier, Doligez Damien, Frisch Alain, Garrigue Jacques, Rémy Didier, Vouillon Jérôme, The

OCaml system release 4.10, Documentation and user’s manual, February 21, 2020, Copyright ©

2020 Institut National de Recherche en Informatique et en Automatique

[69] Madey Jan, Od wnioskowania gramatycznego do walidacji specyfikacji wymagań, w tomie

„Symulacja w badaniach i rozwoju”, tom 6, Politechnika Białostocka; na Researchgate

https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidac

ji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specificatio

n

[70] Madey J., Matwin S., Pascal — opis języka, Sprawozdania IInf UW nr 54 oraz 55, Wydawnictwa

Uniwersytetu Warszawskiego, Warszawa 1976

[71] Mazurkiewicz Antoni, Proving algorithms by tail functions, Information and Control, 18, 1971, pp.

220-226

[72] Mazurkiewicz Antoni, Introduction to Trace Theory (tutorial), in …???

[73] Mazurkiewicz Antoni, Compositional Semantics of Pure Place/Transition Systems, Advances in Pe-

tri Nets, Lecture Notes in Computer Science (G. Rozenberg ed.), vol. 340 (1988) pp 307-330

[74] McCarthy John, A basis for a mathematical theory of computation, Western Joint Computer Confer-

ence, May 1961 later published in Computer Programming and Formal Systems (P. Brawffort and D.

Hirschberg eds), North-Holland 1967

[75] Microsoft Press (opr. w. polskiej Piotr Stokłosa), Microsoft Access 2000 — wersja polska, Wydaw-

nictwo RM, 2000

[76] Naur Peter (ed.), Report on the Algorithmic Language ALGOL60, Communications of the Associa-

tion for Computing Machinery Vol. 3, No.5, May 1960

[77] Niemiec Andrzej, Wielkość współczesnego oprogramowania, Biuletyn PTI nr 4-5, 2014

[78] Norton Peter, Samuel Alex, Aitel David, Eriv Foster-Johnson, Richardson Leonard, Diamond Jason,

Parker Aleatha, Michael Roberts, Python od podstaw, Wydawnictwo Helion 2006

[79] Parnas D.L., Asmis G.J.K., Madey J., Assessment of Safety-Critical Software in Nuclear Power

Plants, Nuclear Safety 32, 2, April-June 1991, str. 189-198.

[80] Paszkowski Stefan, Język ALGOL 60, PWN 1965

[81] Plotkin Gordon D, An operational semantics for CSP, in: Formal Description of Programming Con-

cepts II, D. Bjørner, ed., North-Holland, Amsterdam, pp. 199–225.

[82] Sephens Ryan, Jones D. Arie, Plew Ron, SQL w 24 godziny. Helion 2016

[83] Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to Programming Language Theo-

ry, MIT Press, Cambridge, MA 1977

[84] Scott D., Strachey Ch., Towards a mathematical semantics of computer languages, Technical Mon-

ograph PRG-6, Oxford University 1971.

[85] Tarski Alfred, Pojęcie prawdy w językach nauk dedukcyjnych, Prace Towarzystwa Naukowego

Warszawskiego, Nr 34, Wydział III, 1933, str.35

https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification
https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification
https://www.researchgate.net/publication/283225534_Od_wnioskowania_gramatycznego_do_walidacji_specyfikacji_wymagan_From_grammatical_inference_to_validation_of_requirements_specification

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 279

[86] Tucker J. V., Zucker J. I.. Program Correctness over Abstract Data Types, with Error-State Se-

mantics. North-Holland and CWI Monographs, Amsterdam, 1988.

[87] Turing Alan, On checking a large routine, Report of a Conference on High-Speed Calculating Ma-

chines, University Mathematical Laboratory, Cambridge 1949, pp. 67-69.

[88] Vera (del) Pilar Castillo, Curley Martin, Fabry Eva, Gottiz Michael, Hagedorn Peter, Herczog Edit,

Higgins John, Joyce Alexa, Korte, Werner, Lanvin Bruno, Parola Andrea, Straub Richard, Tapscott

Don, Vassallo John, Manifest w sprawie e-umiejętności, European Schoolnet (EUN Partnership

AISBL)

[89] Viescas John, Podręcznik Microsoft Access 2000, wydawnictwo RM 2000

Blikle Andrzej in cooperation with Schubert Aleksander, Alenkiewicz Joachim, Dziubiak Marian, Kamas

Tomasz, Lingua-WU Report and a diary of the development of its implementation, a manuscript in statu

nascendi

Bordis Tabea, Runge Tobias, Schaefer Ina, Correctness-by-Construction for Feature-Oriented Software

Product Lines, Proceedings of the 19th ACM SIGPLAN International Conference on Generative Program-

ming: Concepts and Experiences (GPCE ’20), November 16–17, 2020, Virtual, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3425898.3426959

https://doi.org/10.1145/3425898.3426959

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 280

14.2 Index of terms and authors

abortion state ... 254

abstract error ... 33

abstract Petri net ... 264

abstract syntax .. 41, 135

acceptability relation ... 87

actual parameter .. 107

algebra of data... 62

algebra of symbolic behaviors 248

algorithmic condition .. 178

ambiguous algebra .. 45

ambiguous grammar ... 48

anchored class transformer 177

Apt K. ... 148

arity of a function .. 38

array .. 63

Asmis G.J.K. ... 149

assertion .. 176

assignment instruction .. 104

atom of a net ... 264

atomic bundle.. 252

atomic computation .. 252

atomic metaprogram ... 185

atomic net.. 262

atomic preamble .. 185

atomic specinstruction .. 185

Bakker (de) Jaco ... 197

basic data .. 208

basic type .. 208

binary relation ... 27

bundle of computations ... 252

carrier of a value ... 80

carrier of an algebra .. 38

Cartesian power .. 18

catalysing condition .. 182

chain .. 23

chain-complete partially ordered set 23

child .. 213

child column ... 229

child table.. 229

Chomsky’s polynomial ... 27

clan of a body.. 66

clan of column type .. 224

clan of yoke... 74

class .. 83

class transformer ... 126

clean termination .. 155

clean total correctness 154, 254

CLI .. 208

cocoon ... 268

codomain of a relation .. 28

co-hereditary condition ... 183

Collatz hypothesis ... 156

colloquial syntax ... 52, 59, 142

column marking .. 224

column orphan .. 231

column table-content... 226

column type .. 224

column-type expressions... 238

column-yoke expression ... 237

composition of bundles ... 252

composition of computations 251

composition of nets ... 263

compositionality ... 54

computable partiality of functions 34

computation .. 251

concatenation of languages ... 25

concatenation of tuples ... 22

concrete semantics .. 58

concrete syntax ... 58, 138

condition ... 170

conservative extension of an algebra 39

conservative transfer ... 73

constant ... 84

constant of an algebra ... 38

constructor of an algebra... 38

consumed condition .. 182

content-subordination relation 228

context-free algebra .. 47

context-free grammar .. 25

context-free language .. 25
continuation .. 55, 151

continuous function .. 23

converse relation ... 28

copy rule ... 55

covering relation ... 87

cursor .. 219

cursor declaration .. 219

cursor grasp ... 219

dangling reference .. 78

data .. 63

database... 228

declaration of class ... 125

declaration of variable .. 124

declaration section .. 109

deep attribute .. 80

denotation ... 54

dependency relation .. 256

deposit ... 78

diligent transfer constructor .. 73

divisors of zero ... 251

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 281

domain .. 31

domain of a function ... 19

domain of a relation .. 28

eager evaluation .. 35

empty class.. 84

empty data ... 222

equational grammar .. 26

equationally definable language 27

error transparent condition .. 171

error trap ... 105

error-handling mechanism .. 105

essential condition .. 182

execution of a net .. 262

existential quantifier ... 17

extension of a signature .. 39

extension of an algebra ... 39

external name of a class .. 84

Fermat theorem ... 156

field ... 210

five-step method ... 59

fixed point equation .. 24

flow relation .. 261

flow-diagram... 150

Floyd Richard ... 148

foreign key .. 213

formal language .. 25

formal-parameter .. 109

full dependency ... 256

function ... 28

functional method ... 107

general quantifier .. 17

Goguen Joe ... 14

goto instruction ... 54

halting property ... 155

handling regime .. 86

hereditary component of a state 221

hereditary condition .. 183

Hoare C.A.R ... 148

holistic column-yoke .. 223

homomorphism (many-sorted) 39

hosting state .. 89

identity function .. 20

identity relation ... 27

immanent condition ... 184

immunizing condition .. 184

imperative method .. 107

independency relation ... 256

indicator of an entity ... 86

induced condition .. 183

infinitistic bundle .. 252

initial execution of a net ... 262

inner object ... 80

instruction ... 103

integrity constraints .. 230

invariant of a loop ... 191

item ... 86

iteration of a function .. 19

iterative program ... 150

Jaco de Bakker paradox .. 197

joint predicate ... 216

jump instruction .. 150

kernel of a homomorphism ... 40

Kleene's propositional calculus 36

labeled row .. 225

lazy evaluation .. 35

least element ... 22

least fixed point of a function 24

least upper bound .. 23

left-algorithmic conditions .. 178

left-hand-side linear equation 151

limit of a chain .. 23

Lingua ... 61

Lingua-MV ... 170

Lingua-V ... 170

list ... 63

list view of an objecton ... 80

LL(k) grammar ... 52

Madey J ... 149

many-sorted language ... 26

mapping .. 18

Mazurkiewicz A. ... 148

McCarthy’s propositional calculus 35

metacomponent of specprogram 180

metaconditions .. 179

metadeclaration ... 180

metainstruction ... 180

metapredicate .. 179

MetaSoft ... 13

method .. 107

method environment ... 83

monoid .. 250

monotone function .. 23

net ... 250

new states .. 232

object... 78

object constructor .. 120

object type ... 78

objecton... 78

of-zones... 177

Olderog H.R. ... 148

one-one function ... 28

on-zones .. 177

operational semantics .. 54

origin tag ... 78

origin tag of store/state ... 85

orphan reference ... 79

overwriting of a function .. 21

parent .. 213

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 282

parent column ... 229

Parnas D.L. ... 149

partial correctness ... 154, 254

partial function .. 18

partial order ... 22

partial precondition ... 155

partially ordered set .. 22

path of transitions ... 262

pattern ... 169

perpetual condition .. 183

Petri net ... 261

polynomial .. 27

polynomial equation ... 153

power of a language .. 25

preamble of a program .. 95

prefix of a computation ... 253

pre-procedure .. 108

primary condition .. 183

primary constructor ... 64

primary key ... 213

prime data ... 62

prime-data constructors .. 62

principle of simplicity ... 57

private visibility .. 88

procedure .. 107

procedure indicator ... 132

procedure signature ... 107

procedure signatures ... 84

pseudotype .. 84

quantified column-yoke .. 223

quasinet ... 250

query ... 216, 246

reachability function ... 262

reachable algebra .. 43

reachable subalgebra ... 43

record .. 63

record attribute .. 63

reference ... 78

reference carried by objecton 79

reference expression ... 103

reference parameter .. 107

reflexive domain ... 55, 108

reflexivity .. 22

register .. 205

register-expression .. 205

register-identifier .. 205

register-invariant ... 205

relation .. 27

replicated denotation ... 233

rescue action ... 105

resilient condition ... 182

restoring transformation 59, 135

restriction of a signature ... 39

right-algorithmic conditions 178

roll-back value .. 214

row table-content .. 226

row-yoke expression ... 238

Scott D. ... 151

semantics... 54, 143

semantics of abstract syntax 43

sequential behavior of a net 262

sequential composition of relations 28

signature of an algebra .. 38

signature of constructor .. 38

similar algebras ... 39

similar signatures .. 40

simple recursion .. 153

skeleton function ... 46

skeleton homomorphism ... 49

skeleton of a function .. 47

sort of a function ... 38

specified programs .. 177

SQL ... 208

state ... 84

store... 84

Strachey Ch. .. 151

strong composition of a bundle 254

strongest partial postcondition 180

strongly prefixed grammar.. 52

structural constructor .. 151

structure view of an objecton 80

structured induction .. 54

structured instruction .. 104

structured programming .. 151

subalgebra ... 39

subordination relation 212, 229

surface attribute .. 80

symbolic behavior of a net .. 263

synchronization of languages 260

synchronization of trace languages 260

syntactic algebra ... 47

syntax .. 54

table... 210, 227

table header ... 226

table orphan .. 231

table type ... 226

table-header expression... 239

table-type expressions ... 239

tail function ... 151

temporal quantifier .. 256

token ... 78

total function ... 18

total order .. 22

trace... 257

trace equivalence .. 257

trace language ... 257

trace projection ... 259

transaction ... 214, 246

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 283

transition dictionary .. 267

transition function ... 261

transitivity ... 22

truncation of a function ... 19

trust test ... 64

truth domain of a condition 171

tuple .. 21

Turing Alan ... 148

type record ... 66

type environment .. 83

type expression ... 101

typing discipline.. 61

unambiguous algebra .. 45

unambiguous grammar ... 48

unambiguous key .. 213

underivablr condition ... 184

update of a function .. 21

upper bound .. 23

usability regime .. 86

validating programming .. 168

value .. 77

value expression.. 96

value parameter ... 107

variable ... 84, 85

view... 218, 247

view declaration .. 218

virtual table ... 218

visibility categories ... 88

visibility regime .. 86

Wagner Eric .. 14

weak antisymmetricity .. 22

weak total correctness 154, 254

weak total postcondition ... 155

weak total precondition ... 155

weakest total precondition .. 180

well-formed class .. 85

well-formed objecton .. 85

well-formed state .. 85

while loop ... 105

word .. 25

word language ... 257

Wright Jessie ... 14

wrt ... 24

yoke... 73

yoke expression .. 73, 136

zone assertion .. 178

14.3 Index of notations

() : empty word
⊆ : a subset of
→ : partial functions
⟼ : total functions

⟹ : mappings
● : composition of relations
© : concatenation
∃ : there exists

∀ : for all

{} : empty set/relation
⊑ : partial order
Ɵ : pseudotype
{a.i | i=1;n} : a set
(a.i | i=1;n) : a sequence
[a.i/b.i | i=1;n] : a mapping
Rel.(A,B) : set of relations

[A] : subset of identity rel.
⧫ : overwriting a function
@ : algorithmic formula
■ : end of theorem/proof
 : stronger than

A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages 284

